Back to Search
Start Over
The association of arterial blood pressure waveform-derived area duty cycle with intra-arrest hemodynamics and cardiac arrest outcomes.
- Source :
-
Resuscitation [Resuscitation] 2023 Oct; Vol. 191, pp. 109950. Date of Electronic Publication: 2023 Aug 25. - Publication Year :
- 2023
-
Abstract
- Aim: Develop a novel, physiology-based measurement of duty cycle (Arterial Blood Pressure-Area Duty Cycle [ABP-ADC]) and evaluate the association of ABP-ADC with intra-arrest hemodynamics and patient outcomes.<br />Methods: This was a secondary retrospective study of prospectively collected data from the ICU-RESUS trial (NCT02837497). Invasive arterial waveform data were used to derive ABP-ADC. The primary exposure was ABP-ADC group (<30%; 30-35%; >35%). The primary outcome was systolic blood pressure (sBP). Secondary outcomes included intra-arrest physiologic goals, CPR quality targets, and patient outcomes. In an exploratory analysis, adjusted splines and receiver operating characteristic (ROC) curves were used to determine an optimal ABP-ADC associated with improved hemodynamics and outcomes using a multivariable model.<br />Results: Of 1129 CPR events, 273 had evaluable arterial waveform data. Mean age is 2.9 years + 4.9 months. Mean ABP-ADC was 32.5% + 5.0%. In univariable analysis, higher ABP-ADC was associated with lower sBP (p < 0.01) and failing to achieve sBP targets (p < 0.01). Other intra-arrest physiologic parameters, quality metrics, and patient outcomes were similar across ABP-ADC groups. Using spline/ROC analysis and clinical judgement, the optimal ABP-ADC cut point was set at 33%. On multivariable analysis, sBP was significantly higher (point estimate 13.18 mmHg, CI95 5.30-21.07, p < 0.01) among patients with ABP-ADC < 33%. Other intra-arrest physiologic and patient outcomes were similar.<br />Conclusions: In this multicenter cohort, a lower ABP-ADC was associated with higher sBPs during CPR. Although ABP-ADC was not associated with outcomes, further studies are needed to define the interactions between CPR mechanics and intra arrest patient physiology.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-1570
- Volume :
- 191
- Database :
- MEDLINE
- Journal :
- Resuscitation
- Publication Type :
- Academic Journal
- Accession number :
- 37634859
- Full Text :
- https://doi.org/10.1016/j.resuscitation.2023.109950