Back to Search Start Over

Effects of targeted clinical examination based on alerts from automated health monitoring systems on herd health and performance of lactating dairy cows.

Authors :
Perez MM
Cabrera EM
Giordano JO
Source :
Journal of dairy science [J Dairy Sci] 2023 Dec; Vol. 106 (12), pp. 9474-9493. Date of Electronic Publication: 2023 Sep 09.
Publication Year :
2023

Abstract

Our objectives were to compare the proportion of lactating dairy cows diagnosed with health disorders (HD) and herd performance when using a health monitoring program designed to rely primarily but not exclusively on alerts from automated health monitoring (AHM) systems or a health monitoring program based primarily on systematic clinical examinations, milk yield monitoring, and visual observation of cows. In a clinical trial, at ∼30 d before expected parturition, nulliparous and parous Holstein cows, stratified by parity and days in gestation, were randomly assigned to the high-intensity clinical monitoring (HIC-M; n = 625) or automated monitoring (AUT-M; n = 624) treatment. Cows were fitted with a neck-attached rumination and physical activity monitoring tag, and individual daily milk yield data were collected from parlor milk meters. For cows in HIC-M, clinical examination was conducted daily until 10 d in milk (DIM) and then in response to milk yield reduction alerts or visual observation of clinical signs of HD over the course of 21 DIM. For cows in AUT-M, clinical examination until 21 DIM was because of health index (HI) score alerts and reduced milk yield alerts. The HI score alerts used were generated based on the manufacturer's settings for the system for the last 2-h period before cows were selected for examination. Visual observation of clinical signs of HD was used for identifying cows potentially missed by automated alerts. Binomial and quantitative data were analyzed by logistic regression and ANOVA with repeated measures, respectively. The percentage of cows diagnosed with at least 1 HD during the experimental treatments risk period tended to be greater and the incidence rate ratio of HD diagnosed was greater in the HIC-M than in the AUT-M treatment. We found no difference between treatments for cows that exited the herd up to 60 or 150 DIM, but more cows tended to exit the herd from 61 to 150 DIM in the HIC-M than in the AUT-M treatment. No differences were detectable between treatments in daily or total milk yield to 21 DIM or in weekly mean milk yield and total milk yield to 150 DIM. More cows were inseminated in estrus for first service if in the HIC-M treatment and had no HD diagnosed than if in the HIC-M treatment but with HD diagnosed, or in the AUT-M treatment and had no HD diagnosed. Cows in the AUT-M treatment with HD diagnosed did not differ from other groups. No differences between treatments were observed in pregnancies per artificial insemination or pregnancy loss for first service. Despite a reduction in the risk of diagnosis of HD, no evidence indicated that a health monitoring program that relied on AHM system alerts to select cows for clinical examination reduced herd performance compared with a more intensive program that included systematic clinical examinations of all cows for the first 10 DIM, reduced milk yield alerts, and visual observation. However, to obtain the same herd performance as with the HIC-M treatment, the AUT-M treatment required use of visual observation. In conclusion, a health monitoring program designed to rely primarily on targeted clinical examination based on alerts from automated health monitoring systems might be a feasible alternative to programs that rely more on clinical examination, provided that visual observation is used to identify cows not detected by automated alerts.<br /> (© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).)

Details

Language :
English
ISSN :
1525-3198
Volume :
106
Issue :
12
Database :
MEDLINE
Journal :
Journal of dairy science
Publication Type :
Academic Journal
Accession number :
37678785
Full Text :
https://doi.org/10.3168/jds.2023-23477