Back to Search
Start Over
Targeting T-cell malignancies using allogeneic double-negative CD4-CAR-T cells.
- Source :
-
Journal for immunotherapy of cancer [J Immunother Cancer] 2023 Sep; Vol. 11 (9). - Publication Year :
- 2023
-
Abstract
- Background: Patients with relapsed/refractory T-cell malignancies have limited treatment options. The use of chimeric antigen receptor (CAR)-T cell therapy for T-cell malignancies is challenging due to possible blast contamination of autologous T-cell products and fratricide of CAR-T cells targeting T-lineage antigens. Recently, allogeneic double-negative T cells (DNTs) have been shown to be safe as an off-the-shelf adoptive cell therapy and to be amendable for CAR transduction. Here, we explore the antitumor activity of allogeneic DNTs against T-cell malignancies and the potential of using anti-CD4-CAR (CAR4)-DNTs as adoptive cell therapy for T-cell malignancies.<br />Methods: Healthy donor-derived allogeneic DNTs were ex vivo expanded with or without CAR4 transduction. The antitumor activity of DNTs and CAR4-DNTs against T-cell acute lymphoblastic leukemia (T-ALL) and peripheral T-cell lymphoma (PTCL) were examined using flow cytometry-based cytotoxicity assays and xenograft models. Mechanisms of action were investigated using transwell assays and blocking assays.<br />Results: Allogeneic DNTs induced endogenous antitumor cytotoxicity against T-ALL and PTCL in vitro, but high doses of DNTs were required to attain therapeutic effects in vivo. The potency of DNTs against T-cell malignancies was significantly enhanced by transducing DNTs with a third-generation CAR4. CAR4-DNTs were manufactured without fratricide and showed superior cytotoxicity against CD4 <superscript>+</superscript> T-ALL and PTCL in vitro and in vivo relative to empty-vector transduced-DNTs. CAR4-DNTs eliminated T-ALL and PTCL cell lines and primary T-ALL blasts in vitro. CAR4-DNTs effectively infiltrated tumors, delayed tumor progression, and prolonged the survival of T-ALL and PTCL xenografts. Further, pretreatment of CAR4-DNTs with PI3Kδ inhibitor idelalisib promoted memory phenotype of CAR4-DNTs and enhanced their persistence and antileukemic efficacy in vivo. Mechanistically, LFA-1, NKG2D, and perforin/granzyme B degranulation pathways were involved in the DNT-mediated and CAR4-DNT-mediated killing of T-ALL and PTCL.<br />Conclusions: These results demonstrate that CAR4-DNTs can effectively target T-ALL and PTCL and support allogeneic CAR4-DNTs as adoptive cell therapy for T-cell malignancies.<br />Competing Interests: Competing interests: LZ has financial interests (eg, holdings/shares) in Wyze Biotech Co Ltd and previously received research funding and consulting fee/honorarium from the Company. LZ and JL are inventors of several DNT cell technology-related patents and intellectual properties. JL, IK, and LZ are inventors of a patent related to this study.<br /> (© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
Details
- Language :
- English
- ISSN :
- 2051-1426
- Volume :
- 11
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Journal for immunotherapy of cancer
- Publication Type :
- Academic Journal
- Accession number :
- 37678917
- Full Text :
- https://doi.org/10.1136/jitc-2023-007277