Back to Search Start Over

Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing.

Authors :
Xie M
Ma X
Wang Y
Li C
Shi H
Yuan X
Hellwich O
Chen C
Zhang W
Zhang C
Ling Q
Gao R
Zhang Y
Ochege FU
Frankl A
De Maeyer P
Buchmann N
Feigenwinter I
Olesen JE
Juszczak R
Jacotot A
Korrensalo A
Pitacco A
Varlagin A
Shekhar A
Lohila A
Carrara A
Brut A
Kruijt B
Loubet B
Heinesch B
Chojnicki B
Helfter C
Vincke C
Shao C
Bernhofer C
Brümmer C
Wille C
Tuittila ES
Nemitz E
Meggio F
Dong G
Lanigan G
Niedrist G
Wohlfahrt G
Zhou G
Goded I
Gruenwald T
Olejnik J
Jansen J
Neirynck J
Tuovinen JP
Zhang J
Klumpp K
Pilegaard K
Šigut L
Klemedtsson L
Tezza L
Hörtnagl L
Urbaniak M
Roland M
Schmidt M
Sutton MA
Hehn M
Saunders M
Mauder M
Aurela M
Korkiakoski M
Du M
Vendrame N
Kowalska N
Leahy PG
Alekseychik P
Shi P
Weslien P
Chen S
Fares S
Friborg T
Tallec T
Kato T
Sachs T
Maximov T
di Cella UM
Moderow U
Li Y
He Y
Kosugi Y
Luo G
Source :
Scientific data [Sci Data] 2023 Sep 07; Vol. 10 (1), pp. 587. Date of Electronic Publication: 2023 Sep 07.
Publication Year :
2023

Abstract

Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R <superscript>2</superscript> ), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.<br /> (© 2023. Springer Nature Limited.)

Details

Language :
English
ISSN :
2052-4463
Volume :
10
Issue :
1
Database :
MEDLINE
Journal :
Scientific data
Publication Type :
Academic Journal
Accession number :
37679357
Full Text :
https://doi.org/10.1038/s41597-023-02473-9