Back to Search Start Over

Model of shrimp pond-mediated spatiotemporal dynamic distribution of antibiotic resistance genes in the mangrove habitat of a subtropical gulf.

Authors :
Sang Y
Mo S
Zeng S
Wu X
Kashif M
Song J
Yu D
Bai L
Jiang C
Source :
The Science of the total environment [Sci Total Environ] 2023 Dec 20; Vol. 905, pp. 167199. Date of Electronic Publication: 2023 Sep 19.
Publication Year :
2023

Abstract

Aquacultures are the main reason for the environmental selection of antibiotic resistance genes (ARGs), resulting in the enrichment of ARGs. As a filter, a marine mangrove ecosystem can reduce antimicrobial resistance (AMR) or eliminate ARGs; however, its elimination mechanism remains unclear. This study investigated the spatiotemporal dynamic distribution of ARGs in two different types of mangrove habitats (shrimp ponds and virgin forests), within a subtropical gulf located in the Beibu Gulf, China, during dry and wet seasons by using metagenomics and real time quantitative polymerase chain reaction (RT-qPCR) analysis. As the key environmental factors, sulfide, salinity, and mobile genetic elements significantly were found to contribute to ARGs distribution, respectively. Wet and dry seasons influenced the dispersal of ARGs but did not affect the microbial community structure. Three potential biomarkers, TEM-116, smeD, and smeE, played key roles in seasonal differences. The key different genes in the biological relevance of absolute abundance were demonstrated by RT-qPCR. Co-occurrence network analysis indicated that high-abundance ARGs were distributed in a modular manner. For the first time, a risk index weighted by risk rank (RIR) was proposed and used to quantify the human risk of ARGs in the mangrove metagenome. The shrimp ponds during the wet season showed the highest RIR detected. In addition to offering a perspective on reducing AMR in mangrove wetlands, this study constructed the first spatiotemporal dynamic model of ARGs in the Beibu Gulf, China and contributed to revealing the global spread of ARGs. Meanwhile, this study proposes a new pipeline for assessing the risk of ARGs, while also exploring the concept of "One Health."<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
905
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
37734616
Full Text :
https://doi.org/10.1016/j.scitotenv.2023.167199