Back to Search
Start Over
Dynamic Multi-Graph Convolution-Based Channel-Weighted Transformer Feature Fusion Network for Epileptic Seizure Prediction.
- Source :
-
IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society [IEEE Trans Neural Syst Rehabil Eng] 2023; Vol. 31, pp. 4266-4277. Date of Electronic Publication: 2023 Nov 01. - Publication Year :
- 2023
-
Abstract
- Electroencephalogram (EEG) based seizure prediction plays an important role in the closed-loop neuromodulation system. However, most existing seizure prediction methods based on graph convolution network only focused on constructing the static graph, ignoring multi-domain dynamic changes in deep graph structure. Moreover, the existing feature fusion strategies generally concatenated coarse-grained epileptic EEG features directly, leading to the suboptimal seizure prediction performance. To address these issues, we propose a novel multi-branch dynamic multi-graph convolution based channel-weighted transformer feature fusion network (MB-dMGC-CWTFFNet) for the patient-specific seizure prediction with the superior performance. Specifically, a multi-branch (MB) feature extractor is first applied to capture the temporal, spatial and spectral representations fromthe epileptic EEG jointly. Then, we design a point-wise dynamic multi-graph convolution network (dMGCN) to dynamically learn deep graph structures, which can effectively extract high-level features from the multi-domain graph. Finally, by integrating the local and global channel-weighted strategies with the multi-head self-attention mechanism, a channel-weighted transformer feature fusion network (CWTFFNet) is adopted to efficiently fuse the multi-domain graph features. The proposed MB-dMGC-CWTFFNet is evaluated on the public CHB-MIT EEG and a private intracranial sEEG datasets, and the experimental results demonstrate that our proposed method achieves outstanding prediction performance compared with the state-of-the-art methods, indicating an effective tool for patient-specific seizure warning. Our code will be available at: https://github.com/Rockingsnow/MB-dMGC-CWTFFNet.
Details
- Language :
- English
- ISSN :
- 1558-0210
- Volume :
- 31
- Database :
- MEDLINE
- Journal :
- IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
- Publication Type :
- Academic Journal
- Accession number :
- 37782584
- Full Text :
- https://doi.org/10.1109/TNSRE.2023.3321414