Back to Search Start Over

Antimicrobial Peptidomimetics Prevent the Development of Resistance against Gentamicin and Ciprofloxacin in Staphylococcus and Pseudomonas Bacteria.

Authors :
Browne K
Kuppusamy R
Walsh WR
Black DS
Willcox MDP
Kumar N
Chen R
Source :
International journal of molecular sciences [Int J Mol Sci] 2023 Oct 06; Vol. 24 (19). Date of Electronic Publication: 2023 Oct 06.
Publication Year :
2023

Abstract

Bacteria readily acquire resistance to traditional antibiotics, resulting in pan-resistant strains with no available treatment. Antimicrobial resistance is a global challenge and without the development of effective antimicrobials, the foundation of modern medicine is at risk. Combination therapies such as antibiotic-antibiotic and antibiotic-adjuvant combinations are strategies used to combat antibiotic resistance. Current research focuses on antimicrobial peptidomimetics as adjuvant compounds, due to their promising activity against antibiotic-resistant bacteria. Here, for the first time we demonstrate that antibiotic-peptidomimetic combinations mitigate the development of antibiotic resistance in Staphylococcus aureus and Pseudomonas aeruginosa . When ciprofloxacin and gentamicin were passaged individually at sub-inhibitory concentrations for 10 days, the minimum inhibitory concentrations (MICs) increased up to 32-fold and 128-fold for S. aureus and P. aeruginosa , respectively. In contrast, when antibiotics were passaged in combination with peptidomimetics (Melimine, Mel4, RK758), the MICs of both antibiotics and peptidomimetics remained constant, indicating these combinations were able to mitigate the development of antibiotic-resistance. Furthermore, antibiotic-peptidomimetic combinations demonstrated synergistic activity against both Gram-positive and Gram-negative bacteria, reducing the concentration needed for bactericidal activity. This has significant potential clinical applications-including preventing the spread of antibiotic-resistant strains in hospitals and communities, reviving ineffective antibiotics, and lowering the toxicity of antimicrobial chemotherapy.

Details

Language :
English
ISSN :
1422-0067
Volume :
24
Issue :
19
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
37834415
Full Text :
https://doi.org/10.3390/ijms241914966