Back to Search Start Over

Prognostication of lung adenocarcinomas using CT-based deep learning of morphological and histopathological features: a retrospective dual-institutional study.

Authors :
Lee T
Lee KH
Lee JH
Park S
Kim YT
Goo JM
Kim H
Source :
European radiology [Eur Radiol] 2024 May; Vol. 34 (5), pp. 3431-3443. Date of Electronic Publication: 2023 Oct 20.
Publication Year :
2024

Abstract

Objectives: To develop and validate CT-based deep learning (DL) models that learn morphological and histopathological features for lung adenocarcinoma prognostication, and to compare them with a previously developed DL discrete-time survival model.<br />Methods: DL models were trained to simultaneously predict five morphological and histopathological features using preoperative chest CT scans from patients with resected lung adenocarcinomas. The DL score was validated in temporal and external test sets, with freedom from recurrence (FFR) and overall survival (OS) as outcomes. Discrimination was evaluated using the time-dependent area under the receiver operating characteristic curve (TD-AUC) and compared with the DL discrete-time survival model. Additionally, we performed multivariable Cox regression analysis.<br />Results: In the temporal test set (640 patients; median age, 64 years), the TD-AUC was 0.79 for 5-year FFR and 0.73 for 5-year OS. In the external test set (846 patients; median age, 65 years), the TD-AUC was 0.71 for 5-year OS, equivalent to the pathologic stage (0.71 vs. 0.71 [p = 0.74]). The prognostic value of the DL score was independent of clinical factors (adjusted per-percentage hazard ratio for FFR (temporal test), 1.02 [95% CI: 1.01-1.03; p < 0.001]; OS (temporal test), 1.01 [95% CI: 1.002-1.02; p = 0.01]; OS (external test), 1.01 [95% CI: 1.005-1.02; p < 0.001]). Our model showed a higher TD-AUC than the DL discrete-time survival model, but without statistical significance (2.5-year OS: 0.73 vs. 0.68; p = 0.13).<br />Conclusion: The CT-based prognostic score from collective deep learning of morphological and histopathological features showed potential in predicting survival in lung adenocarcinomas.<br />Clinical Relevance Statement: Collective CT-based deep learning of morphological and histopathological features presents potential for enhancing lung adenocarcinoma prognostication and optimizing pre-/postoperative management.<br />Key Points: • A CT-based prognostic model was developed using collective deep learning of morphological and histopathological features from preoperative CT scans of 3181 patients with resected lung adenocarcinoma. • The prognostic performance of the model was comparable-to-higher performance than the pathologic T category or stage. • Our approach yielded a higher discrimination performance than the direct survival prediction model, but without statistical significance (0.73 vs. 0.68; p=0.13).<br /> (© 2023. The Author(s), under exclusive licence to European Society of Radiology.)

Details

Language :
English
ISSN :
1432-1084
Volume :
34
Issue :
5
Database :
MEDLINE
Journal :
European radiology
Publication Type :
Academic Journal
Accession number :
37861801
Full Text :
https://doi.org/10.1007/s00330-023-10306-x