Back to Search Start Over

Real-Time Visual Kinematic Feedback During Overground Walking Improves Gait Biomechanics in Individuals Post-Stroke.

Authors :
Hinton EH
Buffum R
Kingston D
Stergiou N
Kesar T
Bierner S
Knarr BA
Source :
Annals of biomedical engineering [Ann Biomed Eng] 2024 Feb; Vol. 52 (2), pp. 355-363. Date of Electronic Publication: 2023 Oct 23.
Publication Year :
2024

Abstract

Treadmill-based gait rehabilitation protocols have shown that real-time visual biofeedback can promote learning of improved gait biomechanics, but previous feedback work has largely involved treadmill walking and not overground gait. The objective of this study was to determine the short-term response to hip extension visual biofeedback, with individuals post-stroke, during unconstrained overground walking. Individuals post-stroke typically have a decreased paretic propulsion and walking speed, but increasing hip extension angle may enable the paretic leg to better translate force anteriorly during push-off. Fourteen individuals post-stroke completed overground walking, one 6-min control bout without feedback, and three 6-min training bouts with real-time feedback. Data were recorded before and after the control bout, before and after the first training bout, and after the third training bout to assess the effects of training. Visual biofeedback consisted of a display attached to eyeglasses that showed one horizontal bar indicating the user's current hip angle and another symbolizing the target hip extension to be reached during training. On average, paretic hip extension angle (p = 0.014), trailing limb angle (p = 0.025), and propulsion (p = 0.011) were significantly higher after training. Walking speed increased but was not significantly higher after training (p = 0.089). Individuals demonstrated a greater increase in their hip extension angle (p = 0.035) and propulsion (p = 0.030) after the walking bout with feedback compared to the control bout, but changes in walking speed did not significantly differ (p = 0.583) between a control walking bout and a feedback bout. Our results show the feasibility of overground visual gait feedback and suggest that feedback regarding paretic hip extension angle enabled many individuals post-stroke to improve parameters important for their walking function.<br /> (© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.)

Details

Language :
English
ISSN :
1573-9686
Volume :
52
Issue :
2
Database :
MEDLINE
Journal :
Annals of biomedical engineering
Publication Type :
Academic Journal
Accession number :
37870663
Full Text :
https://doi.org/10.1007/s10439-023-03381-0