Back to Search
Start Over
Distribution characteristics of non-point source pollution of TP and identification of key source areas in Nanyi Lake (China) Basin: based on InVEST model and source list method.
- Source :
-
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2023 Nov; Vol. 30 (55), pp. 117464-117484. Date of Electronic Publication: 2023 Oct 23. - Publication Year :
- 2023
-
Abstract
- The Nanyi Lake basin, located in the middle and lower reaches of the Yangtze River, is a crucial component of the Yangtze River ecosystem. Excessive phosphorus levels lead to eutrophication in rivers and lakes. This study aims to enhance the identification efficiency of key source areas for non-point source pollution of total phosphorus (TP) in the Nanyi Lake Basin and improve decision-making regarding the treatment of these areas. The study employs the InVEST model and utilizes GIS spatial hot spot analysis to identify key source areas of agricultural TP non-point source pollution. The accuracy of the InVEST model's simulation results was verified using the source list method. The findings indicate that paddy fields serve as the primary pollution source. TP non-point source pollution in Nanyi Lake is influenced by pollution sources, pollution load filtration rate, and potential TP runoff mass concentration. Different pollution sources correspond to distinct key source areas, and the pollution generated by these sources in different administrative regions, ultimately affecting the lake, varies as well. The InVEST model demonstrates great applicability in regions where agricultural TP is the primary pollution source. For the Nanyi Lake basin, which predominantly experiences agricultural TP non-point source pollution, a combination of the InVEST model and the source list method is recommended. The InVEST model serves as the primary tool, while the source list method supplements it. This approach not only compensates for any limitations of the InVEST model's simulation results but also avoids unnecessary economic waste. The outcomes of this study contribute to a deeper scientific understanding of TP pollution in the Nanyi Lake Basin. They also aid in effectively identifying key source areas and formulating appropriate measures based on the pollution characteristics, thereby providing guidance for non-point source pollution control in the basin.<br /> (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Details
- Language :
- English
- ISSN :
- 1614-7499
- Volume :
- 30
- Issue :
- 55
- Database :
- MEDLINE
- Journal :
- Environmental science and pollution research international
- Publication Type :
- Academic Journal
- Accession number :
- 37872342
- Full Text :
- https://doi.org/10.1007/s11356-023-30405-y