Back to Search Start Over

Extraction of Ampelopsis japonica polysaccharides using p-toluenesulfonic acid assisted n-butanol three-phase partitioning: Physicochemical, rheological characterization and antioxidant activity.

Authors :
Wu Y
Chen H
Wang B
Xu J
Li J
Ying G
Chen K
Source :
International journal of biological macromolecules [Int J Biol Macromol] 2024 Jan; Vol. 254 (Pt 1), pp. 127699. Date of Electronic Publication: 2023 Oct 31.
Publication Year :
2024

Abstract

Polysaccharides as the biopolymers are showing various structural and modulatory functions. Effective separation of carbohydrate structures is essential to understanding their function. In this study, we choose an efficient organic acid in combination with recyclable organic solvent three-phase partitioning technology for the simultaneous extraction of polysaccharides from Ampelopsis japonica (AJPs) to ensure the integrity of linear and branched polysaccharide. The monosaccharide composition, glycosidic linkage information, structural and physicochemical analyses and associations with antioxidant activities were extensively analyzed. Synergistic extraction was compared with the conventional hot water extraction method and the results showed that AJPs-HNP exhibited better elastic properties and excellent antioxidant activity. Correlation analysis confirmed that the antioxidant activity of AJPs was significantly correlated with relative molecular weight, uronic acid content and terminal glycoside linkage molar ratios. The collaborative processing has significantly improved the utilization potential of AJPs and provides a sound theoretical foundation for the effective extraction and separation of polysaccharides. Overall, this work provides systematic and comprehensive scientific information on the physicochemical, rheological and antioxidant properties of AJPs, revealing their potential as natural antioxidants in the functional food and pharmaceutical industries.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0003
Volume :
254
Issue :
Pt 1
Database :
MEDLINE
Journal :
International journal of biological macromolecules
Publication Type :
Academic Journal
Accession number :
37913878
Full Text :
https://doi.org/10.1016/j.ijbiomac.2023.127699