Back to Search
Start Over
Identification, activity and delivery of new LysFA67 endolysin to target cheese spoilage Clostridium tyrobutyricum.
- Source :
-
Food microbiology [Food Microbiol] 2024 Feb; Vol. 117, pp. 104401. Date of Electronic Publication: 2023 Oct 10. - Publication Year :
- 2024
-
Abstract
- Bacteriophages and their endolysins are potential biocontrol agents for the anaerobic spoilage organism Clostridium tyrobutyricum, which causes cheese late blowing defect. This study sequenced and compared the genomes of eight bacteriophages from Spanish dairy farms that were active against C. tyrobutyricum, to identify novel species and phage proteins. Phages vB&#95;CtyS-FA67 and vB&#95;CtyS-FA70 shared >94% intergenomic similarity to each other but neither phage had significant similarity to ΦCTP1, the unique C. tyrobutyricum phage sequenced to date. Taxonomic analysis indicated that both phages belong to the class Caudoviricetes and are related to dsDNA viruses with long non-contractile tails. vB&#95;CtyS-FA67 had no other close relatives and encoded a novel endolysin, LysFA67, predicted to belong to the glycoside hydrolase GH24 family. LysFA67 lysed 93% of C. tyrobutyricum cells after 4 min in turbidity reduction assays, retaining lytic activity at pHs 4.2-8.1 and at 30-45 °C. The endolysin remained stable after 30 d storage at 4, 12 and 25 °C, while its activity decreased at -20 °C. LysFA67 lysed several clostridia species, while common dairy bacteria were not affected. Lactococcus lactis INIA 437, used as a cheese starter, was engineered to deliver LysFA67 and red fluorescent LysFA67-mCherry to dairy products. We demonstrated that these engineered strains were able to maintain lytic activity and fluorescence without affecting their technological properties in milk.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1095-9998
- Volume :
- 117
- Database :
- MEDLINE
- Journal :
- Food microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 37919009
- Full Text :
- https://doi.org/10.1016/j.fm.2023.104401