Back to Search Start Over

Optimization and validation of 18F-DCFPyL PET radiomics-based machine learning models in intermediate- to high-risk primary prostate cancer.

Authors :
Luining WI
Oprea-Lager DE
Vis AN
van Moorselaar RJA
Knol RJJ
Wondergem M
Boellaard R
Cysouw MCF
Source :
PloS one [PLoS One] 2023 Nov 09; Vol. 18 (11), pp. e0293672. Date of Electronic Publication: 2023 Nov 09 (Print Publication: 2023).
Publication Year :
2023

Abstract

Introduction: Radiomics extracted from prostate-specific membrane antigen (PSMA)-PET modeled with machine learning (ML) may be used for prediction of disease risk. However, validation of previously proposed approaches is lacking. We aimed to optimize and validate ML models based on 18F-DCFPyL-PET radiomics for the prediction of lymph-node involvement (LNI), extracapsular extension (ECE), and postoperative Gleason score (GS) in primary prostate cancer (PCa) patients.<br />Methods: Patients with intermediate- to high-risk PCa who underwent 18F-DCFPyL-PET/CT before radical prostatectomy with pelvic lymph-node dissection were evaluated. The training dataset included 72 patients, the internal validation dataset 24 patients, and the external validation dataset 27 patients. PSMA-avid intra-prostatic lesions were delineated semi-automatically on PET and 480 radiomics features were extracted. Conventional PET-metrics were derived for comparative analysis. Segmentation, preprocessing, and ML methods were optimized in repeated 5-fold cross-validation (CV) on the training dataset. The trained models were tested on the combined validation dataset. Combat harmonization was applied to external radiomics data. Model performance was assessed using the receiver-operating-characteristics curve (AUC).<br />Results: The CV-AUCs in the training dataset were 0.88, 0.79 and 0.84 for LNI, ECE, and GS, respectively. In the combined validation dataset, the ML models could significantly predict GS with an AUC of 0.78 (p<0.05). However, validation AUCs for LNI and ECE prediction were not significant (0.57 and 0.63, respectively). Conventional PET metrics-based models had comparable AUCs for LNI (0.59, p>0.05) and ECE (0.66, p>0.05), but a lower AUC for GS (0.73, p<0.05). In general, Combat harmonization improved external validation AUCs (-0.03 to +0.18).<br />Conclusion: In internal and external validation, 18F-DCFPyL-PET radiomics-based ML models predicted high postoperative GS but not LNI or ECE in intermediate- to high-risk PCa. Therefore, the clinical benefit seems to be limited. These results underline the need for external and/or multicenter validation of PET radiomics-based ML model analyses to assess their generalizability.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2023 Luining et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

Details

Language :
English
ISSN :
1932-6203
Volume :
18
Issue :
11
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
37943772
Full Text :
https://doi.org/10.1371/journal.pone.0293672