Back to Search Start Over

Investigation of a method to estimate the average speed of sound using phase variances of element signals for ultrasound compound imaging.

Authors :
Nagaoka R
Omura M
Hasegawa H
Source :
Journal of medical ultrasonics (2001) [J Med Ultrason (2001)] 2024 Jan; Vol. 51 (1), pp. 17-28. Date of Electronic Publication: 2023 Nov 10.
Publication Year :
2024

Abstract

Purpose: In the receive beamforming of an ultrasonography system, a B-mode image is reconstructed by assuming an average speed of sound (SoS) as a constant value. In our previous studies, we proposed a method for estimating the average SoS based on the coherence factor (CF) and the reciprocal of phase variances of element signals in delay-and-sum (DAS) beamforming. In this paper, we investigate the accuracy of estimation of the average SoS for compound imaging.<br />Methods: For this purpose, two numerical simulations were performed with k-Wave software. Also, the estimation methods based on the CF and the reciprocal were applied to in vivo data from the common carotid artery, and B-mode images were reconstructed using the estimated average SoS.<br />Results: In the first numerical simulation using an inhomogeneous phantom, the relationship between the accuracy and the transmission angles for the estimation was investigated, and the root mean squared errors (RMSEs) of estimates obtained based on the CF and the reciprocal of the phase variance were 1.25 ± 0.09, and 0.765 ± 0.17% at the transmission sequence of steering angles of (- 10°, - 5°, 0°, 5°, 10°), respectively. In the second numerical simulation using a cyst phantom, lateral resolutions were improved by reconstructing the image using the estimates obtained using the proposed strategy (reciprocal). By the proposed strategy, improvement of the continuity of the lumen-intima interface in the lateral direction was observed in the in vivo experiment.<br />Conclusion: Consequently, the results indicated that the proposed strategy was beneficial for estimation of the average SoS and image reconstruction.<br /> (© 2023. The Author(s), under exclusive licence to The Japan Society of Ultrasonics in Medicine.)

Details

Language :
English
ISSN :
1613-2254
Volume :
51
Issue :
1
Database :
MEDLINE
Journal :
Journal of medical ultrasonics (2001)
Publication Type :
Academic Journal
Accession number :
37947986
Full Text :
https://doi.org/10.1007/s10396-023-01378-9