Back to Search Start Over

New insights into the key role of node I in thallium accumulation in seed of coix (Coix lacryma-jobi L.).

Authors :
Zhan J
Ren Y
Huang Y
Ju X
Liu H
Christie P
Wu L
Source :
The Science of the total environment [Sci Total Environ] 2024 Jan 15; Vol. 908, pp. 168389. Date of Electronic Publication: 2023 Nov 10.
Publication Year :
2024

Abstract

The mechanisms underlying the distribution of many toxic metal(loid)s in shoots and metal(loid) transport to grains have been well documented in the quest for food safety but there remains a lack of knowledge on thallium (Tl) accumulation in food crops. Here, field investigations combined with a glasshouse pot experiment were conducted to investigate the characteristics of Tl distribution and accumulation in coix, a major food crop in south Guizhou province, China, and the role of node I in restricting Tl transport to the seed. Fourteen percent of coix seed samples collected from the Lanmuchang Tl-As-Hg mine contained higher Tl concentrations than the recommended limit for foods and feedstuffs in Germany (0.5 mg kg <superscript>-1</superscript> ), with the highest exceedance rate of the metal(loid)s determined, when grown in soils surrounding the mine with a very high Tl concentration of 0.07-89.5 mg kg <superscript>-1</superscript> and a general low pH of 4.19-6.48. Thallium concentrations were higher in coix nodes than in internodes, followed by roots and grains. The Tl translocation factors from node I to grains were 0.01-0.21 and were the lowest of any translocation factors between different tissues. Node I is therefore the key tissue restricting Tl transport to coix grains. Thallium was localized mainly in the diffuse vascular bundles (DVBs) in node I. The co-localization of Tl and sulfur in the DVBs and Tl contamination-induced phytochelatin (PC) accumulation indicate that Tl storage in the DVBs involving complexation with PCs in node I is an important process in Tl accumulation in coix grains. Moreover, the area of DVBs in node I increased with increasing soil Tl pollution level, providing more channels for Tl transport to the panicles and grains and thereby acting as a key factor restricting Tl transport to the grains. These results provide new insights into the key role of node I in Tl accumulation in coix grains and indicate key points to minimize Tl accumulation in grains for food safety.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023. Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1879-1026
Volume :
908
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
37952669
Full Text :
https://doi.org/10.1016/j.scitotenv.2023.168389