Back to Search Start Over

Recognition of Grasping Patterns Using Deep Learning for Human-Robot Collaboration.

Authors :
Amaral P
Silva F
Santos V
Source :
Sensors (Basel, Switzerland) [Sensors (Basel)] 2023 Nov 05; Vol. 23 (21). Date of Electronic Publication: 2023 Nov 05.
Publication Year :
2023

Abstract

Recent advances in the field of collaborative robotics aim to endow industrial robots with prediction and anticipation abilities. In many shared tasks, the robot's ability to accurately perceive and recognize the objects being manipulated by the human operator is crucial to make predictions about the operator's intentions. In this context, this paper proposes a novel learning-based framework to enable an assistive robot to recognize the object grasped by the human operator based on the pattern of the hand and finger joints. The framework combines the strengths of the commonly available software MediaPipe in detecting hand landmarks in an RGB image with a deep multi-class classifier that predicts the manipulated object from the extracted keypoints. This study focuses on the comparison between two deep architectures, a convolutional neural network and a transformer, in terms of prediction accuracy, precision, recall and F1-score. We test the performance of the recognition system on a new dataset collected with different users and in different sessions. The results demonstrate the effectiveness of the proposed methods, while providing valuable insights into the factors that limit the generalization ability of the models.

Details

Language :
English
ISSN :
1424-8220
Volume :
23
Issue :
21
Database :
MEDLINE
Journal :
Sensors (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
37960688
Full Text :
https://doi.org/10.3390/s23218989