Back to Search
Start Over
Small-molecule binding and sensing with a designed protein family.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2023 Nov 02. Date of Electronic Publication: 2023 Nov 02. - Publication Year :
- 2023
-
Abstract
- Despite transformative advances in protein design with deep learning, the design of small-molecule-binding proteins and sensors for arbitrary ligands remains a grand challenge. Here we combine deep learning and physics-based methods to generate a family of proteins with diverse and designable pocket geometries, which we employ to computationally design binders for six chemically and structurally distinct small-molecule targets. Biophysical characterization of the designed binders revealed nanomolar to low micromolar binding affinities and atomic-level design accuracy. The bound ligands are exposed at one edge of the binding pocket, enabling the de novo design of chemically induced dimerization (CID) systems; we take advantage of this to create a biosensor with nanomolar sensitivity for cortisol. Our approach provides a general method to design proteins that bind and sense small molecules for a wide range of analytical, environmental, and biomedical applications.
Details
- Language :
- English
- ISSN :
- 2692-8205
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Publication Type :
- Academic Journal
- Accession number :
- 37961294
- Full Text :
- https://doi.org/10.1101/2023.11.01.565201