Back to Search Start Over

Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity.

Authors :
Ochiai T
Inukai T
Akiyama M
Furui K
Ohue M
Matsumori N
Inuki S
Uesugi M
Sunazuka T
Kikuchi K
Kakeya H
Sakakibara Y
Source :
Communications chemistry [Commun Chem] 2023 Nov 16; Vol. 6 (1), pp. 249. Date of Electronic Publication: 2023 Nov 16.
Publication Year :
2023

Abstract

The structural diversity of chemical libraries, which are systematic collections of compounds that have potential to bind to biomolecules, can be represented by chemical latent space. A chemical latent space is a projection of a compound structure into a mathematical space based on several molecular features, and it can express structural diversity within a compound library in order to explore a broader chemical space and generate novel compound structures for drug candidates. In this study, we developed a deep-learning method, called NP-VAE (Natural Product-oriented Variational Autoencoder), based on variational autoencoder for managing hard-to-analyze datasets from DrugBank and large molecular structures such as natural compounds with chirality, an essential factor in the 3D complexity of compounds. NP-VAE was successful in constructing the chemical latent space from large-sized compounds that were unable to be handled in existing methods, achieving higher reconstruction accuracy, and demonstrating stable performance as a generative model across various indices. Furthermore, by exploring the acquired latent space, we succeeded in comprehensively analyzing a compound library containing natural compounds and generating novel compound structures with optimized functions.<br /> (© 2023. The Author(s).)

Details

Language :
English
ISSN :
2399-3669
Volume :
6
Issue :
1
Database :
MEDLINE
Journal :
Communications chemistry
Publication Type :
Academic Journal
Accession number :
37973971
Full Text :
https://doi.org/10.1038/s42004-023-01054-6