Back to Search Start Over

Exploring a novel HE image segmentation technique for glioblastoma: A hybrid slime mould and differential evolution approach.

Authors :
Guo H
Liu H
Zhu H
Li M
Yu H
Zhu Y
Chen X
Xu Y
Gao L
Zhang Q
Shentu Y
Source :
Computers in biology and medicine [Comput Biol Med] 2024 Jan; Vol. 168, pp. 107653. Date of Electronic Publication: 2023 Nov 04.
Publication Year :
2024

Abstract

Glioblastoma is a primary brain tumor with high incidence and mortality rates, posing a significant threat to human health. It is crucial to provide necessary diagnostic assistance for its management. Among them, Multi-threshold Image Segmentation (MIS) is considered the most efficient and intuitive method in image processing. In recent years, many scholars have combined different metaheuristic algorithms with MIS to improve the quality of Image Segmentation (IS). Slime Mould Algorithm (SMA) is a metaheuristic approach inspired by the foraging behavior of slime mould populations in nature. In this investigation, we introduce a hybridized variant named BDSMA, aimed at overcoming the inherent limitations of the original algorithm. These limitations encompass inadequate exploitation capacity and a tendency to converge prematurely towards local optima when dealing with complex multidimensional problems. To bolster the algorithm's optimization prowess, we integrate the original algorithm with a robust exploitative operator called Differential Evolution (DE). Additionally, we introduce a strategy for handling solutions that surpass boundaries. The incorporation of an advanced cooperative mixing model accelerates the convergence of BDSMA, refining its precision and preventing it from becoming trapped in local optima. To substantiate the effectiveness of our proposed approach, we conduct a comprehensive series of comparative experiments involving 30 benchmark functions. The results of these experiments demonstrate the superiority of our method in terms of both convergence speed and precision. Moreover, within this study, we propose a MIS technique. This technique is subsequently employed to conduct experiments on IS at both low and high threshold levels. The effectiveness of the BDSMA-based MIS technique is further showcased through its successful application to the medical image of brain glioblastoma. The evaluation of these experimental outcomes, utilizing image quality metrics, conclusively underscores the exceptional efficacy of the algorithm we have put forth.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-0534
Volume :
168
Database :
MEDLINE
Journal :
Computers in biology and medicine
Publication Type :
Academic Journal
Accession number :
37984200
Full Text :
https://doi.org/10.1016/j.compbiomed.2023.107653