Back to Search Start Over

Tagging Continuous Labels for EEG-based Emotion Classification.

Authors :
Gu RF
Zhao LM
Zheng WL
Lu BL
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2023 Jul; Vol. 2023, pp. 1-4.
Publication Year :
2023

Abstract

EEG-based emotion classification has long been a critical task in the field of affective brain-computer interface (aBCI). The majority of leading researches construct supervised learning models based on labeled datasets. Several datasets have been released, including different kinds of emotions while utilizing various forms of stimulus materials. However, they adopt discrete labeling methods, in which the EEG data collected during the same stimulus material are given a same label. These methods neglect the fact that emotion changes continuously, and mislabeled data possibly exist. The imprecision of discrete labels may hinder the progress of emotion classification in concerned works. Therefore, we develop an efficient system in this paper to support continuous labeling by giving each sample a unique label, and construct a continuously labeled EEG emotion dataset. Using our dataset with continuous labels, we demonstrate the superiority of continuous labeling in emotion classification through experiments on several classification models. We further utilize the continuous labels to identify the EEG features under induced and non-induced emotions in both our dataset and a public dataset. Our experimental results reveal the learnability and generality of the relation between the EEG features and their continuous labels.

Details

Language :
English
ISSN :
2694-0604
Volume :
2023
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
38083416
Full Text :
https://doi.org/10.1109/EMBC40787.2023.10341022