Back to Search Start Over

On recycling earth pressure balance shield muck with residual foaming agent: defoaming and antifoaming investigations.

Authors :
Lu Y
Huang M
Zhou Q
Wang B
Wei W
Chen J
Source :
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Jan; Vol. 31 (5), pp. 8046-8060. Date of Electronic Publication: 2024 Jan 04.
Publication Year :
2024

Abstract

Earth pressure balance (EPB) shield is increasingly employed in metro tunnel construction, and causes a series of environmental, safety, and resource waste problems due to the disposal of a considerable amount of muck. In situ recycling of EPB shield muck is an effective solution, whereas the foam is generated by residual foaming agents used as the muck conditioning material during tunnelling, which often adsorbs clay particles and overflows the flocculation tank. To achieve defoaming and antifoaming during the reuse of muck, this study prepared novel eco-friendly silicone oil-polyether defoamers by condensation, compounding, and shear emulsification. Defoaming and antifoaming performances of different defoamers were tested using a modified Ross-Miles method and a scale model of field flocculation systems. The results indicated that a high efficiency in defoam and antifoam was characterized by chemical grafting of nano-SiO <subscript>2</subscript> from silicone oils, uniform distribution and large size of grains, low viscosity, and surface tension. The defoamer dosage of 0.002-0.004 wt% near critical micelle concentration (CMC) for each defoamer is reasonable. Overall, the prepared hydroxyl silicone oil-glycerol polyoxypropylene ether (H-G) defoamer compared with other silicone oil-polyether defoamers and commercial defoamers presents the highest defoaming and antifoaming efficiency. Considering the effects of EPB shield muck, the H-G defoamer is least affected by the compound materials and increasing concentration of the commercial foaming agent. Nevertheless, the stability of the H-G emulsion system is weaker than that of the dimethyl silicone oil-glycerol polyoxypropylene ether (D-G) emulsion system after 1 month of sealed storage.<br /> (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1614-7499
Volume :
31
Issue :
5
Database :
MEDLINE
Journal :
Environmental science and pollution research international
Publication Type :
Academic Journal
Accession number :
38175516
Full Text :
https://doi.org/10.1007/s11356-023-31525-1