Back to Search Start Over

Complementary imaging of nanoclusters interacting with mitochondria via stimulated emission depletion and scanning transmission electron microscopy.

Authors :
Zhao D
Gao L
Huang X
Chen G
Gao B
Wang J
Gu M
Wang F
Source :
Journal of hazardous materials [J Hazard Mater] 2024 Mar 05; Vol. 465, pp. 133371. Date of Electronic Publication: 2023 Dec 26.
Publication Year :
2024

Abstract

The emerging stress caused by nanomaterials in the environment is of great concern because they can have toxic effects on organisms. However, thorough study of the interactions between cells and diverse nanoparticles (NPs) using a unified approach is challenging. Here, we present a novel approach combining stimulated emission depletion (STED) microscopy and scanning transmission electron microscopy (STEM) for quantitative assessment, real-time tracking, and in situ imaging of the intracellular behavior of gold-silver nanoclusters (AuAgNCs), based on their fluorescence and electron properties. The results revealed an aggregated state of AuAgNCs within the mitochondria and an increase in sulfur content in AuAgNCs, presumably owing to their reaction with thiol-containing molecules inside the mitochondria. Moreover, AuAgNCs (100 μg/mL) induced a 75% decline in mitochondrial membrane potential and a 12-fold increase of mitochondrial reactive oxygen species in comparison to control. This mitochondrial damage may be triggered by the reaction of AuAgNCs with thiol, which provides direct imaging evidence for uncovering the action mechanism of AuAgNCs on the mitochondria. The proposed dual-imaging strategy using STED and STEM is a potential tool to offer valuable insights into cytotoxicity between subcellular structures and diverse NPs, and can serve as a key strategy for nanomaterial biosafety assessment.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3336
Volume :
465
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
38185082
Full Text :
https://doi.org/10.1016/j.jhazmat.2023.133371