Back to Search Start Over

Multi-center application of a convolutional neural network for preoperative detection of cavernous sinus invasion in pituitary adenomas.

Authors :
Fang Y
Wang H
Cao D
Cai S
Qian C
Feng M
Zhang W
Cao L
Chen H
Wei L
Mu S
Pei Z
Li J
Wang R
Wang S
Source :
Neuroradiology [Neuroradiology] 2024 Mar; Vol. 66 (3), pp. 353-360. Date of Electronic Publication: 2024 Jan 18.
Publication Year :
2024

Abstract

Objective: Cavernous sinus invasion (CSI) plays a pivotal role in determining management in pituitary adenomas. The study aimed to develop a Convolutional Neural Network (CNN) model to diagnose CSI in multiple centers.<br />Methods: A total of 729 cases were retrospectively obtained in five medical centers with (n = 543) or without CSI (n = 186) from January 2011 to December 2021. The CNN model was trained using T1-enhanced MRI from two pituitary centers of excellence (n = 647). The other three municipal centers (n = 82) as the external testing set were imported to evaluate the model performance. The area-under-the-receiver-operating-characteristic-curve values (AUC-ROC) analyses were employed to evaluate predicted performance. Gradient-weighted class activation mapping (Grad-CAM) was used to determine models' regions of interest.<br />Results: The CNN model achieved high diagnostic accuracy (0.89) in identifying CSI in the external testing set, with an AUC-ROC value of 0.92 (95% CI, 0.88-0.97), better than CSI clinical predictor of diameter (AUC-ROC: 0.75), length (AUC-ROC: 0.80), and the three kinds of dichotomizations of the Knosp grading system (AUC-ROC: 0.70-0.82). In cases with Knosp grade 3A (n = 24, CSI rate, 0.35), the accuracy the model accounted for 0.78, with sensitivity and specificity values of 0.72 and 0.78, respectively. According to the Grad-CAM results, the views of the model were confirmed around the sellar region with CSI.<br />Conclusions: The deep learning model is capable of accurately identifying CSI and satisfactorily able to localize CSI in multicenters.<br /> (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1432-1920
Volume :
66
Issue :
3
Database :
MEDLINE
Journal :
Neuroradiology
Publication Type :
Academic Journal
Accession number :
38236424
Full Text :
https://doi.org/10.1007/s00234-024-03287-1