Back to Search Start Over

Enhanced detection of acrylamide using a versatile solid-state upconversion sensor through spectral and visual analysis.

Authors :
Rong Y
Hassan MM
Wu J
Chen S
Yang W
Li Y
Zhu J
Huang J
Chen Q
Source :
Journal of hazardous materials [J Hazard Mater] 2024 Mar 15; Vol. 466, pp. 133369. Date of Electronic Publication: 2023 Dec 26.
Publication Year :
2024

Abstract

Acrylamide (AM) generally forms in high-temperature processes and has been classified as a potential carcinogen. In this study, we put forward a maneuverable solid-state luminescence sensor using polydimethylsiloxane (PDMS) as the matrix coupled with upconversion nanoparticles as the indicator. The core-shell upconversion nanoparticles emitting cyan light were uniformly encapsulated in PDMS. Then it was further modified with complementary DNA of AM aptamer. The nanocrystalline fluorescein isothiocyanate isomer (FITC), coupled with AM aptamer, was attached to the surface of PDMS. FITC effectively quenched the upconversion luminescence through fluorescence resonance energy transfer (FRET). The introduction of AM resulted in preferentially bound to aptamer caused the separation of the quencher and the donor, and led to luminescence recovery. The developed sensor was applied for both spectral and visual monitoring, demonstrating a detection limit (LOD) of 1.00 nM and 1.07 nM, respectively. Importantly, in the actual foodstuffs detection, there is no obvious difference between the results of this study and the standard method, which indicates the developed method has good accuracy. Therefore, this solid-state sensor has the potential for on-site detection using a smartphone device and an Android application.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024. Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1873-3336
Volume :
466
Database :
MEDLINE
Journal :
Journal of hazardous materials
Publication Type :
Academic Journal
Accession number :
38278076
Full Text :
https://doi.org/10.1016/j.jhazmat.2023.133369