Back to Search
Start Over
Differences in toxicity induced by the various polymer types of nanoplastics on HepG2 cells.
- Source :
-
The Science of the total environment [Sci Total Environ] 2024 Mar 25; Vol. 918, pp. 170664. Date of Electronic Publication: 2024 Feb 02. - Publication Year :
- 2024
-
Abstract
- The problem of microplastics (MPs) contamination in food has gradually come to the fore. MPs can be transmitted through the food chain and accumulate within various organisms, ultimately posing a threat to human health. The concentration of nanoplastics (NPs) exposed to humans may be higher than that of MPs. For the first time, we studied the differences in toxicity, and potential toxic effects of different polymer types of NPs, namely, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS) on HepG2 cells. In this study, PET-NPs, PVC-NPs, and PS-NPs, which had similar particle size, surface charge, and shape, were prepared using nanoprecipitation and emulsion polymerization. The results of the CCK-8 assay showed that the PET-NPs and PVC-NPs induced a decrease in cell viability in a concentration-dependent manner, and their lowest concentrations causing significant cytotoxicity were 100 and 150 μg/mL, respectively. Moreover, the major cytotoxic effects of PET-NPs and PVC-NPs at high concentrations may be to induce an increase in intracellular ROS, which in turn induces cellular damage and other toxic effects. Notably, our study suggested that PET-NPs and PVC-NPs may induce apoptosis in HepG2 cells through the mitochondrial apoptotic pathway. However, no relevant cytotoxicity, oxidative damage, and apoptotic toxic effects were detected in HepG2 cells with exposure to PS-NPs. Furthermore, the analysis of transcriptomics data suggested that PET-NPs and PVC-NPs could significantly inhibit the expression of DNA repair-related genes in the p53 signaling pathway. Compared to PS-NPs, the expression levels of lipid metabolism-related genes were down-regulated to a greater extent by PET-NPs and PVC-NPs. In conclusion, PET-NPs and PVC-NPs were able to induce higher cytotoxic effects than PS-NPs, in which the density and chemical structure of NPs of different polymer types may be the key factors causing the differences in toxicity.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 918
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 38311080
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2024.170664