Back to Search
Start Over
Novel anti-inflammatory diketopiperazine alkaloids from the marine-derived fungus Penicillium brasilianum.
- Source :
-
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2024 Feb 05; Vol. 108 (1), pp. 194. Date of Electronic Publication: 2024 Feb 05. - Publication Year :
- 2024
-
Abstract
- Diketopiperazine alkaloids have proven the most abundant heterocyclic alkaloids up to now, which usually process diverse scaffolds and rich biological activities. In our search for bioactive diketopiperazine alkaloids from marine-derived fungi, two novel diketopiperazine alkaloids, penipiperazine A (1) and its biogenetically related new metabolite (2), together with a known analogue neofipiperzine C (3), were obtained from the strain Penicillium brasilianum. Their planar structures and absolute configurations were elucidated by extensive spectroscopic analyses, <superscript>13</superscript> C NMR calculation, Marfey's, ECD, and ORD methods. Compound 1 featured a unique 6/5/6/6/5 indole-pyrazino-pyrazino-pyrrolo system, and its plausible biogenetic pathway was also proposed. Additionally, compounds 1-3 have been tested for their inflammatory activities. 1 and 2 significantly inhibited the release of NO and the expression of related pro-inflammatory cytokines on LPS-stimulated RAW264.7 cells, suggesting they could be attracting candidate for further development as anti-inflammatory agent. KEY POINTS: • A novel diketopiperazine alkaloid featuring a unique 6/5/6/6/5 indole-pyrazino-pyrazino-pyrrolo system was isolated from the marine fungus Penicillium brasilianum. • The structure of 1 was elucidated by detailed analysis of 2D NMR data, <superscript>13</superscript> C NMR calculation, Marfey's, ECD, and ORD methods. • Compounds 1 and 2 significantly inhibited the release of NO and the expression of related pro-inflammatory cytokines on LPS-stimulated RAW264.7 cells.<br /> (© 2024. The Author(s).)
Details
- Language :
- English
- ISSN :
- 1432-0614
- Volume :
- 108
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Applied microbiology and biotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 38315417
- Full Text :
- https://doi.org/10.1007/s00253-024-13026-4