Back to Search Start Over

Population characteristic exploitation-based multi-orientation multi-objective gene selection for microarray data classification.

Authors :
Li M
Cao R
Zhao Y
Li Y
Deng S
Source :
Computers in biology and medicine [Comput Biol Med] 2024 Mar; Vol. 170, pp. 108089. Date of Electronic Publication: 2024 Feb 02.
Publication Year :
2024

Abstract

Gene selection is a process of selecting discriminative genes from microarray data that helps to diagnose and classify cancer samples effectively. Swarm intelligence evolution-based gene selection algorithms can never circumvent the problem that the population is prone to local optima in the process of gene selection. To tackle this challenge, previous research has focused primarily on two aspects: mitigating premature convergence to local optima and escaping from local optima. In contrast to these strategies, this paper introduces a novel perspective by adopting reverse thinking, where the issue of local optima is seen as an opportunity rather than an obstacle. Building on this foundation, we propose MOMOGS-PCE, a novel gene selection approach that effectively exploits the advantageous characteristics of populations trapped in local optima to uncover global optimal solutions. Specifically, MOMOGS-PCE employs a novel population initialization strategy, which involves the initialization of multiple populations that explore diverse orientations to foster distinct population characteristics. The subsequent step involved the utilization of an enhanced NSGA-II algorithm to amplify the advantageous characteristics exhibited by the population. Finally, a novel exchange strategy is proposed to facilitate the transfer of characteristics between populations that have reached near maturity in evolution, thereby promoting further population evolution and enhancing the search for more optimal gene subsets. The experimental results demonstrated that MOMOGS-PCE exhibited significant advantages in comprehensive indicators compared with six competitive multi-objective gene selection algorithms. It is confirmed that the "reverse-thinking" approach not only avoids local optima but also leverages it to uncover superior gene subsets for cancer diagnosis.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-0534
Volume :
170
Database :
MEDLINE
Journal :
Computers in biology and medicine
Publication Type :
Academic Journal
Accession number :
38330824
Full Text :
https://doi.org/10.1016/j.compbiomed.2024.108089