Back to Search Start Over

Combination of self-assembling system and N,O-carboxymethyl chitosan improves ocular residence of anti-glaucoma drug.

Authors :
Kailasam V
Kumara BN
Prasad KS
Nirmal J
Source :
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V [Eur J Pharm Biopharm] 2024 Apr; Vol. 197, pp. 114208. Date of Electronic Publication: 2024 Feb 07.
Publication Year :
2024

Abstract

Glaucoma is known to be one of the principal causes of vision loss due to elevated intraocular pressure. Currently, latanoprost eye drops is used as first-line treatment for glaucoma; however, it possesses low bioavailability due to rapid precorneal clearance. A novel delivery system with a mucoadhesive property could overcome this problem. Therefore, we attempt to develop a combination of self-assembling latanoprost nanomicelles (Latcel) and a mucoadhesive polymer (N,O-carboxymethyl chitosan: N,O-CMC) to improve the corneal residence time. Latcel was developed using Poloxamer-407 by thin film hydration method, followed by the addition of N,O-CMC using simple solvation to obtain Latcel-CMC and characterized using various physicochemical characterization techniques. The particle size of Latcel-CMC was 94.07 ± 2.48 nm and a zeta potential of -16.03 ± 0.66 mV, with a sustained release for 24h whereas marketed latanoprost drops released 90 % of the drug within 1h. In vitro cytotoxicity studies, HET-CAM, and in vivo Draize test showed the biocompatibility of Latcel-CMC. Cellular uptake studies performed using fluorescein isothiocyanate (FITC) loaded nanomicelles in human corneal epithelial cells indicates the increased cellular uptake as compare to plain FITC solution. In vivo ocular residence time was evaluated in Wistar rats using Indocyanine green (ICG) loaded nanomicelles by an in vivo imaging system (IVIS), indicating Latcel-CMC (8h) has better residence time than plain ICG solution (2h). The Latcel-CMC showed improved corneal residence time and sustained release of latanoprost due to increased mucoadhesion. Thus, the developed N,O-Carboxymethyl chitosan based nanomicelles eye drop could be a better strategy than conventional eye drops for topical delivery of latanoprost to treat glaucoma.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3441
Volume :
197
Database :
MEDLINE
Journal :
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
Publication Type :
Academic Journal
Accession number :
38336235
Full Text :
https://doi.org/10.1016/j.ejpb.2024.114208