Back to Search Start Over

Genome-wide identification and expression analysis of the Dof gene family reveals their involvement in hormone response and abiotic stresses in sunflower (Helianthus annuus L.).

Authors :
Song H
Ji X
Wang M
Li J
Wang X
Meng L
Wei P
Xu H
Niu T
Liu A
Source :
Gene [Gene] 2024 Jun 05; Vol. 910, pp. 148336. Date of Electronic Publication: 2024 Mar 04.
Publication Year :
2024

Abstract

DNA binding with one finger (Dof), plant-specific zinc finger transcription factors, can participate in various physiological and biochemical processes during the life of plants. As one of the most important oil crops in the world, sunflower (Helianthus annuus L.) has significant economic and ornamental value. However, a systematic analysis of H. annuus Dof (HaDof) members and their functions has not been extensively conducted. In this study, we identified 50 HaDof genes that are unevenly distributed on 17 chromosomes of sunflower. We present a comprehensive overview of the HaDof genes, including their chromosome locations, phylogenetic analysis, and expression profile characterization. Phylogenetic analysis classified the 366 Dof members identified from 11 species into four groups (further subdivided into nine subfamilies). Segmental duplications are predominantly contributed to the expansion of sunflower Dof genes, and all segmental duplicate gene pairs are under purifying selection due to strong evolutionary constraints. Furthermore, we observed differential expression patterns for HaDof genes in normal tissues as well as under hormone treatment or abiotic stress conditions by analyzing RNA-seq data from previous studies and RT-qPCR data in our current study. The expression of HaDof04 and HaDof43 were not detected in any samples, which implied that they may be gradually undergoing pseudogenization process. Some HaDof genes, such as HaDof25 and HaDof30, showed responsiveness to exogenous plant hormones, such as kinetin, brassinosteroid, auxin or strigolactone, while others like HaDof15 and HaDof35 may participate in abiotic stress resistance of sunflower seedling. Our study represents the initial step towards understanding the phylogeny and expression characterization of sunflower Dof family genes, which may provide valuable reference information for functional studies on hormone response, abiotic stress resistance, and molecular breeding in sunflower and other species.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-0038
Volume :
910
Database :
MEDLINE
Journal :
Gene
Publication Type :
Academic Journal
Accession number :
38447680
Full Text :
https://doi.org/10.1016/j.gene.2024.148336