Back to Search Start Over

Genome-wide characterization of circulating metabolic biomarkers.

Authors :
Karjalainen MK
Karthikeyan S
Oliver-Williams C
Sliz E
Allara E
Fung WT
Surendran P
Zhang W
Jousilahti P
Kristiansson K
Salomaa V
Goodwin M
Hughes DA
Boehnke M
Fernandes Silva L
Yin X
Mahajan A
Neville MJ
van Zuydam NR
de Mutsert R
Li-Gao R
Mook-Kanamori DO
Demirkan A
Liu J
Noordam R
Trompet S
Chen Z
Kartsonaki C
Li L
Lin K
Hagenbeek FA
Hottenga JJ
Pool R
Ikram MA
van Meurs J
Haller T
Milaneschi Y
Kähönen M
Mishra PP
Joshi PK
Macdonald-Dunlop E
Mangino M
Zierer J
Acar IE
Hoyng CB
Lechanteur YTE
Franke L
Kurilshikov A
Zhernakova A
Beekman M
van den Akker EB
Kolcic I
Polasek O
Rudan I
Gieger C
Waldenberger M
Asselbergs FW
Hayward C
Fu J
den Hollander AI
Menni C
Spector TD
Wilson JF
Lehtimäki T
Raitakari OT
Penninx BWJH
Esko T
Walters RG
Jukema JW
Sattar N
Ghanbari M
Willems van Dijk K
Karpe F
McCarthy MI
Laakso M
Järvelin MR
Timpson NJ
Perola M
Kooner JS
Chambers JC
van Duijn C
Slagboom PE
Boomsma DI
Danesh J
Ala-Korpela M
Butterworth AS
Kettunen J
Source :
Nature [Nature] 2024 Apr; Vol. 628 (8006), pp. 130-138. Date of Electronic Publication: 2024 Mar 06.
Publication Year :
2024

Abstract

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism <superscript>1-7</superscript> . This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases <superscript>8-11</superscript> . Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1476-4687
Volume :
628
Issue :
8006
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
38448586
Full Text :
https://doi.org/10.1038/s41586-024-07148-y