Back to Search Start Over

Unraveling the complexity of vascular tone regulation: a multiscale computational approach to integrating chemo-mechano-biological pathways with cardiovascular biomechanics.

Authors :
Marino M
Sauty B
Vairo G
Source :
Biomechanics and modeling in mechanobiology [Biomech Model Mechanobiol] 2024 Aug; Vol. 23 (4), pp. 1091-1120. Date of Electronic Publication: 2024 Mar 20.
Publication Year :
2024

Abstract

Vascular tone regulation is a crucial aspect of cardiovascular physiology, with significant implications for overall cardiovascular health. However, the precise physiological mechanisms governing smooth muscle cell contraction and relaxation remain uncertain. The complexity of vascular tone regulation stems from its multiscale and multifactorial nature, involving global hemodynamics, local flow conditions, tissue mechanics, and biochemical pathways. Bridging this knowledge gap and translating it into clinical practice presents a challenge. In this paper, a computational model is presented to integrate chemo-mechano-biological pathways with cardiovascular biomechanics, aiming to unravel the intricacies of vascular tone regulation. The computational framework combines an algebraic description of global hemodynamics with detailed finite element analyses at the scale of vascular segments for describing their passive and active mechanical response, as well as the molecular transport problem linked with chemo-biological pathways triggered by wall shear stresses. Their coupling is accounted for by considering a two-way interaction. Specifically, the focus is on the role of nitric oxide-related molecular pathways, which play a critical role in modulating smooth muscle contraction and relaxation to maintain vascular tone. The computational framework is employed to examine the interplay between localized alterations in the biomechanical response of a specific vessel segment-such as those induced by calcifications or endothelial dysfunction-and the broader global hemodynamic conditions-both under basal and altered states. The proposed approach aims to advance our understanding of vascular tone regulation and its impact on cardiovascular health. By incorporating chemo-mechano-biological mechanisms into in silico models, this study allows us to investigate cardiovascular responses to multifactorial stimuli and incorporate the role of adaptive homeostasis in computational biomechanics frameworks.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1617-7940
Volume :
23
Issue :
4
Database :
MEDLINE
Journal :
Biomechanics and modeling in mechanobiology
Publication Type :
Academic Journal
Accession number :
38507180
Full Text :
https://doi.org/10.1007/s10237-024-01826-6