Back to Search Start Over

Preclinical Characterization of DPI-4452: A 68 Ga/ 177 Lu Theranostic Ligand for Carbonic Anhydrase IX.

Authors :
Massière F
Wiedemann N
Borrego I
Hoehne A
Osterkamp F
Paschke M
Zboralski D
Schumann A
Bredenbeck A
Brichory F
Attinger A
Source :
Journal of nuclear medicine : official publication, Society of Nuclear Medicine [J Nucl Med] 2024 May 01; Vol. 65 (5), pp. 761-767. Date of Electronic Publication: 2024 May 01.
Publication Year :
2024

Abstract

The membrane protein carbonic anhydrase IX (CAIX) is highly expressed in many hypoxic or von Hippel-Lindau tumor suppressor-mutated tumor types. Its restricted expression in healthy tissues makes CAIX an attractive diagnostic and therapeutic target. DPI-4452 is a CAIX-targeting cyclic peptide with a DOTA cage, allowing radionuclide chelation for theranostic purposes. Here, we report CAIX expression in multiple tumor types and provide in vitro and in vivo evaluations of <superscript>68</superscript> Ga-labeled DPI-4452 ([ <superscript>68</superscript> Ga]Ga-DPI-4452) and <superscript>177</superscript> Lu-labeled DPI-4452 ([ <superscript>177</superscript> Lu]Lu-DPI-4452). Methods: CAIX expression was assessed by immunohistochemistry with a panel of tumor and healthy tissues. The molecular interactions of complexed and uncomplexed DPI-4452 with CAIX were assessed by surface plasmon resonance and cell-binding assays. In vivo characterization of radiolabeled and nonradiolabeled DPI-4452 was performed in HT-29 colorectal cancer (CRC) and SK-RC-52 clear cell renal cell carcinoma (ccRCC) human xenograft mouse models and in healthy beagle dogs. Results: Overexpression of CAIX was shown in several tumor types, including ccRCC, CRC, and pancreatic ductal adenocarcinoma. DPI-4452 specifically and selectively bound CAIX with subnanomolar affinity. In cell-binding assays, DPI-4452 displayed comparably high affinities for human and canine CAIX but a much lower affinity for murine CAIX, demonstrating that the dog is a relevant species for biodistribution studies. DPI-4452 was rapidly eliminated from the systemic circulation of beagle dogs. The highest uptake of [ <superscript>68</superscript> Ga]Ga-DPI-4452 and [ <superscript>177</superscript> Lu]Lu-DPI-4452 was observed in the small intestine and stomach, 2 organs known to express CAIX. Uptake in other organs (e.g., kidneys) was remarkably low. In HT-29 and SK-RC-52 xenograft mouse models, both [ <superscript>68</superscript> Ga]Ga-DPI-4452 and [ <superscript>177</superscript> Lu]Lu-DPI-4452 showed tumor-selective uptake; in addition, [ <superscript>177</superscript> Lu]Lu-DPI-4452 significantly reduced tumor growth. These results demonstrated the theranostic potential of DPI-4452. Conclusion: DPI-4452 selectively targets CAIX. [ <superscript>68</superscript> Ga]Ga-DPI-4452 and [ <superscript>177</superscript> Lu]Lu-DPI-4452 localized to tumors and were well tolerated in mice. [ <superscript>177</superscript> Lu]Lu-DPI-4452 demonstrated strong tumor growth inhibition in 2 xenograft mouse models. Thus, the 2 agents potentially provide a theranostic approach for selecting and treating patients with CAIX-expressing tumors such as ccRCC, CRC, and pancreatic ductal adenocarcinoma.<br /> (© 2024 by the Society of Nuclear Medicine and Molecular Imaging.)

Details

Language :
English
ISSN :
1535-5667
Volume :
65
Issue :
5
Database :
MEDLINE
Journal :
Journal of nuclear medicine : official publication, Society of Nuclear Medicine
Publication Type :
Academic Journal
Accession number :
38514083
Full Text :
https://doi.org/10.2967/jnumed.123.266309