Back to Search Start Over

In a novel autoimmune and high-pressure glaucoma model a complex immune response is induced.

Authors :
Reinehr S
Wulf J
Theile J
Schulte KK
Peters M
Fuchshofer R
Dick HB
Joachim SC
Source :
Frontiers in immunology [Front Immunol] 2024 Mar 07; Vol. 15, pp. 1296178. Date of Electronic Publication: 2024 Mar 07 (Print Publication: 2024).
Publication Year :
2024

Abstract

Background: The neurodegenerative processes leading to glaucoma are complex. In addition to elevated intraocular pressure (IOP), an involvement of immunological mechanisms is most likely. In the new multifactorial glaucoma model, a combination of high IOP and optic nerve antigen (ONA) immunization leads to an enhanced loss of retinal ganglion cells accompanied by a higher number of microglia/macrophages in the inner retina. Here, we aimed to evaluate the immune response in this new model, especially the complement activation and the number of T-cells, for the first time. Further, the microglia/macrophage response was examined in more detail.<br />Methods: Six-week-old wildtype (WT+ONA) and βB1-connective tissue growth factor high-pressure mice (CTGF+ONA) were immunized with 1 mg ONA. A wildtype control (WT) and a CTGF group (CTGF) received NaCl instead. Six weeks after immunization, retinae from all four groups were processed for immunohistology, RT-qPCR, and flow cytometry, while serum was used for microarray analyses.<br />Results: We noticed elevated numbers of C1q <superscript>+</superscript> cells (classical complement pathway) in CTGF and CTGF+ONA retinae as well as an upregulation of C1qa , C1qb , and C1qc mRNA levels in these groups. While the complement C3 was only increased in CTGF and CTGF+ONA retinae, enhanced numbers of the terminal membrane attack complex were noted in all three glaucoma groups. Flow cytometry and RT-qPCR analyses revealed an enhancement of different microglia/macrophages markers, including CD11b, especially in CTGF and CTGF+ONA retinae. Interestingly, increased retinal mRNA as well as serum levels of the tumor necrosis factor α were found throughout the different glaucoma groups. Lastly, more T-cells could be observed in the ganglion cell layer of the new CTGF+ONA model.<br />Conclusion: These results emphasize an involvement of the complement system, microglia/macrophages, and T-cells in glaucomatous disease. Moreover, in the new multifactorial glaucoma model, increased IOP in combination with autoimmune processes seem to enforce an additional T-cell response, leading to a more persistent pathology. Hence, this new model mimics the pathomechanisms occurring in human glaucoma more accurately and could therefore be a helpful tool to find new therapeutic approaches for patients in the future.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.<br /> (Copyright © 2024 Reinehr, Wulf, Theile, Schulte, Peters, Fuchshofer, Dick and Joachim.)

Details

Language :
English
ISSN :
1664-3224
Volume :
15
Database :
MEDLINE
Journal :
Frontiers in immunology
Publication Type :
Academic Journal
Accession number :
38515755
Full Text :
https://doi.org/10.3389/fimmu.2024.1296178