Back to Search Start Over

Potential actions of capsaicin for preventing vascular calcification of vascular smooth muscle cells in vitro and in vivo .

Authors :
Yan YF
Feng Y
Wang SM
Fang F
Chen HY
Zhen MX
Ji YQ
Wu SD
Source :
Heliyon [Heliyon] 2024 Mar 12; Vol. 10 (6), pp. e28021. Date of Electronic Publication: 2024 Mar 12 (Print Publication: 2024).
Publication Year :
2024

Abstract

Vascular calcification (VC) is an accurate risk factor and predictor of adverse cardiovascular events; however, there is currently no effective therapy to specifically prevent VC progression. Capsaicin (Cap) is a bioactive alkaloid isolated from Capsicum annuum L., a traditional medicinal and edible plant that is beneficial for preventing cardiovascular diseases. However, the effect of Cap on VC remains unclear. This study aimed to explore the effects and related mechanisms of Cap on aortic calcification in a mouse and on Pi-induced calcification in vascular smooth muscle cells (VSMCs). First, we established a calcification mouse model with vitamin D3 and evaluated the effects of Cap on calcification mice using von Kossa staining, calcium content, and alkaline phosphatase activity tests. The results showed that Cap significantly improved calcification in mice. VSMCs were then cultured in 2.6 mM Na <subscript>2</subscript> HPO <subscript>4</subscript> and 50 μg/mL ascorbic acid for 7 days to obtain a calcification model, and we investigated the effects and mechanisms of Cap on VSMCs calcification by assessing the changes of calcium deposition, calcium content, and subsequent VC biomarkers. These results showed that Cap alleviated VSMCs calcification by upregulating the expressions of TRPV1. Moreover, Cap reduced the expression of Wnt3a and β-catenin, whereas DKK1 antagonised the inhibitory effect of Cap on VSMC calcification. This study is the first to offer direct evidence that Cap inhibits the Wnt/β-catenin signaling pathway by upregulating the expression of the TRPV1 receptor, resulting in the decreased expression of Runx2 and BMP-2, thereby reducing VSMC calcification. Our study may provide novel strategies for preventing the progression of VC. This could serve as a theoretical basis for clinically treating VC with spicy foods.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2024 The Authors. Published by Elsevier Ltd.)

Details

Language :
English
ISSN :
2405-8440
Volume :
10
Issue :
6
Database :
MEDLINE
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
38524547
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e28021