Back to Search
Start Over
A nomogram model for predicting intramyocardial hemorrhage post-PCI based on SYNTAX score and clinical features.
- Source :
-
BMC cardiovascular disorders [BMC Cardiovasc Disord] 2024 Mar 25; Vol. 24 (1), pp. 179. Date of Electronic Publication: 2024 Mar 25. - Publication Year :
- 2024
-
Abstract
- Objective: The aim of this study is to develop a nomogram model for predicting the occurrence of intramyocardial hemorrhage (IMH) in patients with Acute Myocardial Infarction (AMI) following Percutaneous Coronary Intervention (PCI). The model is constructed utilizing clinical data and the SYNTAX Score (SS), and its predictive value is thoroughly evaluated.<br />Methods: A retrospective study was conducted, including 216 patients with AMI who underwent Cardiac Magnetic Resonance (CMR) within a week post-PCI. Clinical data were collected for all patients, and their SS were calculated based on coronary angiography results. Based on the presence or absence of IMH as indicated by CMR, patients were categorized into two groups: the IMH group (109 patients) and the non-IMH group (107 patients). The patients were randomly divided in a 7:3 ratio into a training set (151 patients) and a validation set (65 patients). A nomogram model was constructed using univariate and multivariate logistic regression analyses. The predictive capability of the model was assessed using Receiver Operating Characteristic (ROC) curve analysis, comparing the predictive value based on the area under the ROC curve (AUC).<br />Results: In the training set, IMH post-PCI was observed in 78 AMI patients on CMR, while 73 did not show IMH. Variables with a significance level of P < 0.05 were screened using univariate logistic regression analysis. Twelve indicators were selected for multivariate logistic regression analysis: heart rate, diastolic blood pressure, ST segment elevation on electrocardiogram, culprit vessel, symptom onset to reperfusion time, C-reactive protein, aspartate aminotransferase, lactate dehydrogenase, creatine kinase, creatine kinase-MB, high-sensitivity troponin T (HS-TnT), and SYNTAX Score. Based on multivariate logistic regression results, two independent predictive factors were identified: HS-TnT (Odds Ratio [OR] = 1.61, 95% Confidence Interval [CI]: 1.21-2.25, P = 0.003) and SS (OR = 2.54, 95% CI: 1.42-4.90, P = 0.003). Consequently, a nomogram model was constructed based on these findings. The AUC of the nomogram model in the training set was 0.893 (95% CI: 0.840-0.946), and in the validation set, it was 0.910 (95% CI: 0.823-0.970). Good consistency and accuracy of the model were demonstrated by calibration and decision curve analysis.<br />Conclusion: The nomogram model, constructed utilizing HS-TnT and SS, demonstrates accurate predictive capability for the risk of IMH post-PCI in patients with AMI. This model offers significant guidance and theoretical support for the clinical diagnosis and treatment of these patients.<br /> (© 2024. The Author(s).)
Details
- Language :
- English
- ISSN :
- 1471-2261
- Volume :
- 24
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- BMC cardiovascular disorders
- Publication Type :
- Academic Journal
- Accession number :
- 38528469
- Full Text :
- https://doi.org/10.1186/s12872-024-03847-6