Back to Search
Start Over
Cardiac GR Mediates the Diurnal Rhythm in Ventricular Arrhythmia Susceptibility.
- Source :
-
Circulation research [Circ Res] 2024 May 10; Vol. 134 (10), pp. 1306-1326. Date of Electronic Publication: 2024 Mar 27. - Publication Year :
- 2024
-
Abstract
- Background: Ventricular arrhythmias (VAs) demonstrate a prominent day-night rhythm, commonly presenting in the morning. Transcriptional rhythms in cardiac ion channels accompany this phenomenon, but their role in the morning vulnerability to VAs and the underlying mechanisms are not understood. We investigated the recruitment of transcription factors that underpins transcriptional rhythms in ion channels and assessed whether this mechanism was pertinent to the heart's intrinsic diurnal susceptibility to VA.<br />Methods and Results: Assay for transposase-accessible chromatin with sequencing performed in mouse ventricular myocyte nuclei at the beginning of the animals' inactive (ZT0) and active (ZT12) periods revealed differentially accessible chromatin sites annotating to rhythmically transcribed ion channels and distinct transcription factor binding motifs in these regions. Notably, motif enrichment for the glucocorticoid receptor (GR; transcriptional effector of corticosteroid signaling) in open chromatin profiles at ZT12 was observed, in line with the well-recognized ZT12 peak in circulating corticosteroids. Molecular, electrophysiological, and in silico biophysically-detailed modeling approaches demonstrated GR-mediated transcriptional control of ion channels (including Scn5a underlying the cardiac Na <superscript>+</superscript> current, Kcnh2 underlying the rapid delayed rectifier K <superscript>+</superscript> current, and Gja1 responsible for electrical coupling) and their contribution to the day-night rhythm in the vulnerability to VA. Strikingly, both pharmacological block of GR and cardiomyocyte-specific genetic knockout of GR blunted or abolished ion channel expression rhythms and abolished the ZT12 susceptibility to pacing-induced VA in isolated hearts.<br />Conclusions: Our study registers a day-night rhythm in chromatin accessibility that accompanies diurnal cycles in ventricular myocytes. Our approaches directly implicate the cardiac GR in the myocyte excitability rhythm and mechanistically link the ZT12 surge in glucocorticoids to intrinsic VA propensity at this time.<br />Competing Interests: Disclosures None.
- Subjects :
- Animals
Mice
Male
Arrhythmias, Cardiac metabolism
Arrhythmias, Cardiac physiopathology
Arrhythmias, Cardiac genetics
Mice, Inbred C57BL
NAV1.5 Voltage-Gated Sodium Channel metabolism
NAV1.5 Voltage-Gated Sodium Channel genetics
Connexin 43 metabolism
Connexin 43 genetics
Mice, Knockout
Action Potentials
Circadian Rhythm
Receptors, Glucocorticoid metabolism
Receptors, Glucocorticoid genetics
Myocytes, Cardiac metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1524-4571
- Volume :
- 134
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Circulation research
- Publication Type :
- Academic Journal
- Accession number :
- 38533639
- Full Text :
- https://doi.org/10.1161/CIRCRESAHA.123.323464