Back to Search
Start Over
Albumin suppresses oxidation of TiNb alloy in the simulated inflammatory environment.
- Source :
-
Journal of biomedical materials research. Part B, Applied biomaterials [J Biomed Mater Res B Appl Biomater] 2024 Apr; Vol. 112 (4), pp. e35404. - Publication Year :
- 2024
-
Abstract
- Literature data has shown that reactive oxygen species (ROS), generated by immune cells during post-operative inflammation, could induce corrosion of standard Ti-based biomaterials. For Ti6Al4V alloy, this process can be further accelerated by the presence of albumin. However, this phenomenon remains unexplored for Ti β-phase materials, such as TiNb alloys. These alloys are attractive due to their relatively low elastic modulus value. This study aims to address the question of how albumin influences the corrosion resistance of TiNb alloy under simulated inflammation. Electrochemical and ion release tests have revealed that albumin significantly enhances corrosion resistance over both short (2 and 24 h) and long (2 weeks) exposure periods. Furthermore, post-immersion XPS and cross-section TEM analysis have demonstrated that prolonged exposure to an albumin-rich inflammatory solution results in the complete coverage of the TiNb surface by a protein layer. Moreover, TEM studies revealed that H <subscript>2</subscript> O <subscript>2</subscript> -induced oxidation and further formation of a defective oxide film were suppressed in the solution enriched with albumin. Overall results indicate that contrary to Ti6Al4V, the addition of albumin to the PBS + H <subscript>2</subscript> O <subscript>2</subscript> solution is not necessary to simulate the harsh inflammatory conditions as could possibly be found in the vicinity of a TiNb implant.<br /> (© 2024 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals LLC.)
Details
- Language :
- English
- ISSN :
- 1552-4981
- Volume :
- 112
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Journal of biomedical materials research. Part B, Applied biomaterials
- Publication Type :
- Academic Journal
- Accession number :
- 38533765
- Full Text :
- https://doi.org/10.1002/jbm.b.35404