Back to Search Start Over

Multiplexed PLGA scaffolds with nitric oxide-releasing zinc oxide and melatonin-modulated extracellular vesicles for severe chronic kidney disease.

Authors :
Rhim WK
Woo J
Kim JY
Lee EH
Cha SG
Kim DS
Baek SW
Park CG
Kim BS
Kwon TG
Han DK
Source :
Journal of advanced research [J Adv Res] 2024 Mar 25. Date of Electronic Publication: 2024 Mar 25.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Introduction: With prevalence of chronic kidney disease (CKD) in worldwide, the strategies to recover renal function via tissue regeneration could provide alternatives to kidney replacement therapies. However, due to relatively low reproducibility of renal basal cells and limited bioactivities of implanted biomaterials along with the high probability of substance-inducible inflammation and immunogenicity, kidney tissue regeneration could be challenging.<br />Objectives: To exclude various side effects from cell transplantations, in this study, we have induced extracellular vesicles (EVs) incorporated cell-free hybrid PMEZ scaffolds.<br />Methods: Hybrid PMEZ scaffolds incorporating essential bioactive components, such as ricinoleic acid grafted Mg(OH) <subscript>2</subscript> (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) based on biodegradable porous PLGA (P) platform was successfully manufactured. Consecutively, for functional improvements, melatonin-modulated extracellular vesicles (mEVs), derived from the human umbilical cord MSCs in chemically defined media without serum impurities, were also loaded onto PMEZ scaffolds to construct the multiplexed PMEZ/mEV scaffold.<br />Results: With functionalities of Mg(OH) <subscript>2</subscript> and extracellular matrix-loaded PLGA scaffolds, the continuous nitric oxide-releasing property of modified ZnO and remarkably upregulated regenerative functionalities of mEVs showed significantly enhanced kidney regenerative activities. Based on these, the structural and functional restoration has been practically achieved in 5/6 nephrectomy mouse models that mimicked severe human CKD.<br />Conclusion: Our study has proved the combinatory bioactivities of the biodegradable PLGA-based multiplexed scaffold for kidney tissue regeneration in 5/6 nephrectomy mouse representing a severe CKD model. The optimal microenvironments for the morphogenetic formations of renal tissues and functional restorations have successfully achieved the combinatory bioactivities of remarkable components for PMEZ/mEV, which could be a promising therapeutic alternative for CKD treatment.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2023. Production and hosting by Elsevier B.V.)

Details

Language :
English
ISSN :
2090-1224
Database :
MEDLINE
Journal :
Journal of advanced research
Publication Type :
Academic Journal
Accession number :
38537702
Full Text :
https://doi.org/10.1016/j.jare.2024.03.018