Back to Search Start Over

Molecularly Imprinted Heterostructure-Assisted Laser Desorption Ionization Mass Spectrometry Analysis and Imaging of Quinolones.

Authors :
Wang R
Zhang W
Liang W
Wang X
Li L
Wang Z
Li M
Li J
Ma C
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Apr 10; Vol. 16 (14), pp. 17377-17392. Date of Electronic Publication: 2024 Mar 29.
Publication Year :
2024

Abstract

Quinolone residues resulting from body metabolism and waste discharge pose a significant threat to the ecological environment and to human health. Therefore, it is essential to monitor quinolone residues in the environment. Herein, an efficient and sensitive matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) method was devised by using a novel molecularly imprinted heterojunction (MIP-TNs@GCNs) as the matrix. Molecularly imprinted titanium dioxide nanosheets (MIP-TNs) and graphene-like carbon nitrides (GCNs) were associated at the heterojunction interface, allowing for the specific, rapid, and high-throughput ionization of quinolones. The mechanism of MIP-TNs@GCNs was clarified using their adsorption properties and laser desorption/ionization capability. The prepared oxygen-vacancy-rich MIP-TNs@GCNs heterojunction exhibited higher light absorption and ionization efficiencies than TNs and GCNs. The good linearity (in the quinolone concentration range of 0.5-50 pg/μL, R <superscript>2</superscript> > 0.99), low limit of detection (0.1 pg/μL), good reproducibility ( n = 8, relative standard deviation [RSD] < 15%), and high salt and protein resistance for quinolones in groundwater samples were achieved using the established MIP-TNs@GCNs-MALDI/MS method. Moreover, the spatial distributions of endogenous compounds (e.g., amino acids, organic acids, and flavonoids) and xenobiotic quinolones from Rhizoma Phragmitis and Rhizoma Nelumbinis were visualized using the MIP-TNs@GCNs film as the MALDI/MS imaging matrix. Because of its superior advantages, the MIP-TNs@GCNs-MALDI/MS method is promising for the analysis and imaging of quinolones and small molecules.

Details

Language :
English
ISSN :
1944-8252
Volume :
16
Issue :
14
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
38551391
Full Text :
https://doi.org/10.1021/acsami.3c16277