Back to Search Start Over

Deconjugation potentials of natural estrogen conjugates in sewage and wastewater treatment plant: New insights from model prediction and on-site investigations.

Authors :
Zhang J
Liu ZH
Wu JL
Ding YT
Ma QG
Hayat W
Liu Y
Wang PJ
Dang Z
Rittmann B
Source :
The Science of the total environment [Sci Total Environ] 2024 May 20; Vol. 926, pp. 172071. Date of Electronic Publication: 2024 Mar 29.
Publication Year :
2024

Abstract

Natural estrogen conjugates play important roles in municipal wastewater treatment plant (WWTP), but their deconjugation potentials are poorly understood. This work is the first to investigate the relationships between the enzyme activities of arylsulfatase/β-glucuronidase and deconjugation potentials of natural estrogen conjugates. This work led to three important findings. First, the enzyme activity of β-glucuronidase in sewage is far higher than that of arylsulfatase, while their corresponding activities in activated sludge were similar. Second, a model based on β-glucuronidase could successfully predict the deconjugation potentials of natural estrogen glucuronide conjugates in sewage. Third, the enzyme activity of arylsulfatase in sewage was too low to lead to evident deconjugation of sulfate conjugates, which means that the deconjugation rate of estrogen sulfates can be regarded as zero. By comparing their theoretical removal based on enzyme activity and on-site investigation, it is reasonable to conclude that reverse deconjugation of estrogen conjugates (i.e., conjugation of natural estrogens to form conjugated estrogens) likely exist in WWTP, which explains well why natural estrogen conjugates cannot be effectively removed in WWTP. Meanwhile, this work provides new insights how to improve the removal performance of WWTP on natural estrogen conjugates. SYNOPSIS: This work is the first to show how arylsulfatase/β-glucuronidase could affect deconjugation of natural estrogen conjugates and possible way to enhance their removal in wastewater treatment plant.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
926
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
38554960
Full Text :
https://doi.org/10.1016/j.scitotenv.2024.172071