Back to Search Start Over

BayesKAT: bayesian optimal kernel-based test for genetic association studies reveals joint genetic effects in complex diseases.

Authors :
Das Adhikari S
Cui Y
Wang J
Source :
Briefings in bioinformatics [Brief Bioinform] 2024 Mar 27; Vol. 25 (3).
Publication Year :
2024

Abstract

Genome-wide Association Studies (GWAS) methods have identified individual single-nucleotide polymorphisms (SNPs) significantly associated with specific phenotypes. Nonetheless, many complex diseases are polygenic and are controlled by multiple genetic variants that are usually non-linearly dependent. These genetic variants are marginally less effective and remain undetected in GWAS analysis. Kernel-based tests (KBT), which evaluate the joint effect of a group of genetic variants, are therefore critical for complex disease analysis. However, choosing different kernel functions in KBT can significantly influence the type I error control and power, and selecting the optimal kernel remains a statistically challenging task. A few existing methods suffer from inflated type 1 errors, limited scalability, inferior power or issues of ambiguous conclusions. Here, we present a new Bayesian framework, BayesKAT (https://github.com/wangjr03/BayesKAT), which overcomes these kernel specification issues by selecting the optimal composite kernel adaptively from the data while testing genetic associations simultaneously. Furthermore, BayesKAT implements a scalable computational strategy to boost its applicability, especially for high-dimensional cases where other methods become less effective. Based on a series of performance comparisons using both simulated and real large-scale genetics data, BayesKAT outperforms the available methods in detecting complex group-level associations and controlling type I errors simultaneously. Applied on a variety of groups of functionally related genetic variants based on biological pathways, co-expression gene modules and protein complexes, BayesKAT deciphers the complex genetic basis and provides mechanistic insights into human diseases.<br /> (© The Author(s) 2024. Published by Oxford University Press.)

Details

Language :
English
ISSN :
1477-4054
Volume :
25
Issue :
3
Database :
MEDLINE
Journal :
Briefings in bioinformatics
Publication Type :
Academic Journal
Accession number :
38653490
Full Text :
https://doi.org/10.1093/bib/bbae182