Back to Search
Start Over
BayesKAT: bayesian optimal kernel-based test for genetic association studies reveals joint genetic effects in complex diseases.
- Source :
-
Briefings in bioinformatics [Brief Bioinform] 2024 Mar 27; Vol. 25 (3). - Publication Year :
- 2024
-
Abstract
- Genome-wide Association Studies (GWAS) methods have identified individual single-nucleotide polymorphisms (SNPs) significantly associated with specific phenotypes. Nonetheless, many complex diseases are polygenic and are controlled by multiple genetic variants that are usually non-linearly dependent. These genetic variants are marginally less effective and remain undetected in GWAS analysis. Kernel-based tests (KBT), which evaluate the joint effect of a group of genetic variants, are therefore critical for complex disease analysis. However, choosing different kernel functions in KBT can significantly influence the type I error control and power, and selecting the optimal kernel remains a statistically challenging task. A few existing methods suffer from inflated type 1 errors, limited scalability, inferior power or issues of ambiguous conclusions. Here, we present a new Bayesian framework, BayesKAT (https://github.com/wangjr03/BayesKAT), which overcomes these kernel specification issues by selecting the optimal composite kernel adaptively from the data while testing genetic associations simultaneously. Furthermore, BayesKAT implements a scalable computational strategy to boost its applicability, especially for high-dimensional cases where other methods become less effective. Based on a series of performance comparisons using both simulated and real large-scale genetics data, BayesKAT outperforms the available methods in detecting complex group-level associations and controlling type I errors simultaneously. Applied on a variety of groups of functionally related genetic variants based on biological pathways, co-expression gene modules and protein complexes, BayesKAT deciphers the complex genetic basis and provides mechanistic insights into human diseases.<br /> (© The Author(s) 2024. Published by Oxford University Press.)
Details
- Language :
- English
- ISSN :
- 1477-4054
- Volume :
- 25
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Briefings in bioinformatics
- Publication Type :
- Academic Journal
- Accession number :
- 38653490
- Full Text :
- https://doi.org/10.1093/bib/bbae182