Back to Search Start Over

HDAC1/2 and HDAC3 play distinct roles in controlling adult Meibomian gland homeostasis.

Authors :
Zhu X
Xu M
Millar SE
Source :
The ocular surface [Ocul Surf] 2024 Jul; Vol. 33, pp. 39-49. Date of Electronic Publication: 2024 Apr 26.
Publication Year :
2024

Abstract

Purpose: To investigate the roles of HDAC1/2 and HDAC3 in adult Meibomian gland (MG) homeostasis.<br />Methods: HDAC1/2 or HDAC3 were inducibly deleted in MG epithelial cells of adult mice. The morphology of MG was examined. Proliferation, apoptosis, and expression of MG acinus and duct marker genes, meibocyte differentiation genes, and HDAC target genes, were analyzed via immunofluorescence, TUNEL assay, and RNA in situ hybridization.<br />Results: Co-deletion of HDAC1/2 in MG epithelium caused gradual loss of acini and formation of cyst-like structures in the central duct. These phenotypes required homozygous deletion of both HDAC1 and HDAC2, indicating that they function redundantly in the adult MG. Short-term deletion of HDAC1/2 in MG epithelium had little effect on meibocyte maturation but caused decreased proliferation of acinar basal cells, excessive DNA damage, ectopic apoptosis, and increased p53 acetylation and p16 expression in the MG. By contrast, HDAC3 deletion in MG epithelium caused dilation of central duct, atrophy of acini, defective meibocyte maturation, increased acinar basal cell proliferation, and ectopic apoptosis and DNA damage. Levels of p53 acetylation and p21 expression were elevated in HDAC3-deficient MGs, while the expression of the differentiation regulator PPARĪ³ and the differentiation markers PLIN2 and FASN was downregulated.<br />Conclusions: HDAC1 and HDAC2 function redundantly in adult Meibomian gland epithelial progenitor cells and are essential for their proliferation and survival, but not for acinar differentiation, while HDAC3 is required to limit acinar progenitor cell proliferation and permit differentiation. HDAC1/2 and HDAC3 have partially overlapping roles in maintaining survival of MG cells.<br /> (Copyright © 2024 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1937-5913
Volume :
33
Database :
MEDLINE
Journal :
The ocular surface
Publication Type :
Academic Journal
Accession number :
38679196
Full Text :
https://doi.org/10.1016/j.jtos.2024.04.005