Back to Search
Start Over
Predicting balloon shape in percutaneous microcompression : an observational comparative analysis of Meckel's cave imaging and balloon morphology.
- Source :
-
Neurosurgical review [Neurosurg Rev] 2024 May 09; Vol. 47 (1), pp. 198. Date of Electronic Publication: 2024 May 09. - Publication Year :
- 2024
-
Abstract
- Achieving a pear-shaped balloon holds pivotal significance in the context of successful percutaneous microcompression procedures for trigeminal neuralgia. However, inflated balloons may assume various configurations, whether it is inserted into Meckel's cave or not. The absence of an objective evaluation metric has become apparent. To investigate the relationship between the morphology of Meckel's Cave and the balloon used in percutaneous microcompression for trigeminal neuralgia and establish objective criteria for assessing balloon shape in percutaneous microcompression procedures. This retrospective study included 58 consecutive patients with primary trigeminal neuralgia. Data included demographic, clinical outcomes, and morphological features of Meckel's cave and the balloon obtained from MRI and Dyna-CT imaging. MRI of Meckel's cave and Dyna-CT of intraoperative balloon were modeled, and the morphological characteristics and correlation were analyzed. The reconstructed balloon presented a fuller morphology expanding outward and upward on the basis of Meckel's cave. The projected area of balloon was strongly positively correlated with the projected area of Meckel's cave. The Pearson correlation coefficients were 0.812 (P<0.001) for axial view, 0.898 (P<0.001) for sagittal view and 0.813 (P<0.001) for coronal view. Similarity analysis showed that the sagittal projection image of Meckel's cave and that of the balloon had good similarity. This study reveals that the balloon in percutaneous microcompression essentially represents an expanded morphology of Meckel's cave, extending outward and upward. There is a strong positive correlation between the volume and projected area of the balloon and that of Meckel's cave. Notably, the sagittal projection image of Meckel's cave serves as a reliable predictor of the intraoperative balloon shape. This method has a certain generalizability and can help providing objective criteria for judging balloon shape during percutaneous microcompression procedures.<br /> (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Details
- Language :
- English
- ISSN :
- 1437-2320
- Volume :
- 47
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Neurosurgical review
- Publication Type :
- Academic Journal
- Accession number :
- 38722430
- Full Text :
- https://doi.org/10.1007/s10143-024-02382-4