Back to Search
Start Over
Non-target metabolomics approach for the investigation of the hidden effects induced by atrazine and its degradation products on plant metabolism.
- Source :
-
Chemosphere [Chemosphere] 2024 Jul; Vol. 359, pp. 142298. Date of Electronic Publication: 2024 May 08. - Publication Year :
- 2024
-
Abstract
- Japanese radish (Raphanus sativus var. longipinnatus) plants grown under laboratory conditions were individually exposed to the same doses of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine, ATR) or its main degradation products: either 2-amino-4-chloro-6-isopropylamino-1,3,5-triazine (DEA) or 2-amino-4-chloro-6-ethylamino-1,3,5-triazine (DIA) or desethyl-desisopropyl-atrazine (DEDIA) or 4-(ethylamino)-2-hydroxy-6-(isopropylamino)-1,3,5-triazine (HA), respectively. One week after treatment in plants exposed to ATR, DIA, and DEA, their concentrations were 7.8 μg/g, 9.7 μg/g, and 14.5 μg/g, respectively, while those treated with DEDIA and HA did not contain these compounds. These results were correlated with plant amino acid profile obtained by suspect screening analysis and metabolomic "fingerprint" based on non-target analysis, obtained by liquid chromatography coupled with QTRAP triple quadrupole mass spectrometer. In all cases, both ATR and its by-products were found to interfere with the plant's amino acid profile and modify its metabolic "fingerprint". Therefore, we proved that the non-target metabolomics approach is an effective tool for investigating the hidden effects of pesticides and their transformation products, which is particularly important as these compounds may reduce the quality of edible plants.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1298
- Volume :
- 359
- Database :
- MEDLINE
- Journal :
- Chemosphere
- Publication Type :
- Academic Journal
- Accession number :
- 38729438
- Full Text :
- https://doi.org/10.1016/j.chemosphere.2024.142298