Back to Search
Start Over
(2,6-Dimethylphenyl)arsonic Acid Induces Apoptosis through the Mitochondrial Pathway, Downregulates XIAP, and Overcomes Multidrug Resistance to Cytostatic Drugs in Leukemia and Lymphoma Cells In Vitro.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2024 Apr 26; Vol. 25 (9). Date of Electronic Publication: 2024 Apr 26. - Publication Year :
- 2024
-
Abstract
- Cancer treatment is greatly challenged by drug resistance, highlighting the need for novel drug discoveries. Here, we investigated novel organoarsenic compounds regarding their resistance-breaking and apoptosis-inducing properties in leukemia and lymphoma. Notably, the compound (2,6-dimethylphenyl)arsonic acid (As2) demonstrated significant inhibition of cell proliferation and induction of apoptosis in leukemia and lymphoma cells while sparing healthy leukocytes. As2 reached half of its maximum activity (AC50) against leukemia cells at around 6.3 µM. Further experiments showed that As2 overcomes multidrug resistance and sensitizes drug-resistant leukemia and lymphoma cell lines to treatments with the common cytostatic drugs vincristine, daunorubicin, and cytarabine at low micromolar concentrations. Mechanistic investigations of As2-mediated apoptosis involving FADD (FAS-associated death domain)-deficient or Smac (second mitochondria-derived activator of caspases)/DIABLO (direct IAP binding protein with low pI)-overexpressing cell lines, western blot analysis of caspase-9 cleavage, and measurements of mitochondrial membrane integrity identified the mitochondrial apoptosis pathway as the main mode of action. Downregulation of XIAP (x-linked inhibitor of apoptosis protein) and apoptosis induction independent of Bcl-2 (B-cell lymphoma 2) and caspase-3 expression levels suggest the activation of additional apoptosis-promoting mechanisms. Due to the selective apoptosis induction, the synergistic effects with common anti-cancer drugs, and the ability to overcome multidrug resistance in vitro, As2 represents a promising candidate for further preclinical investigations with respect to refractory malignancies.
- Subjects :
- Humans
Cell Line, Tumor
Down-Regulation drug effects
Cell Proliferation drug effects
Cytostatic Agents pharmacology
Antineoplastic Agents pharmacology
X-Linked Inhibitor of Apoptosis Protein metabolism
Apoptosis drug effects
Drug Resistance, Neoplasm drug effects
Lymphoma drug therapy
Lymphoma metabolism
Lymphoma pathology
Leukemia metabolism
Leukemia drug therapy
Leukemia pathology
Drug Resistance, Multiple drug effects
Mitochondria metabolism
Mitochondria drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 25
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 38731935
- Full Text :
- https://doi.org/10.3390/ijms25094713