Back to Search
Start Over
Magnetically modified-mitoxantrone mesoporous organosilica drugs: an emergent multimodal nanochemotherapy for breast cancer.
- Source :
-
Journal of nanobiotechnology [J Nanobiotechnology] 2024 May 14; Vol. 22 (1), pp. 249. Date of Electronic Publication: 2024 May 14. - Publication Year :
- 2024
-
Abstract
- Background: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge.<br />Results: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe <subscript>3</subscript> O <subscript>4</subscript> NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs.<br />Conclusions: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe <subscript>3</subscript> O <subscript>4</subscript> into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.<br /> (© 2024. The Author(s).)
- Subjects :
- Humans
Female
Cell Line, Tumor
Drug Carriers chemistry
Silicon Dioxide chemistry
Porosity
Drug Liberation
Nanoparticles chemistry
MCF-7 Cells
Nanomedicine methods
Reactive Oxygen Species metabolism
Breast Neoplasms drug therapy
Cell Survival drug effects
Organosilicon Compounds chemistry
Organosilicon Compounds pharmacology
Antineoplastic Agents pharmacology
Antineoplastic Agents chemistry
Antineoplastic Agents therapeutic use
Mitoxantrone pharmacology
Mitoxantrone chemistry
Mitoxantrone therapeutic use
Subjects
Details
- Language :
- English
- ISSN :
- 1477-3155
- Volume :
- 22
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Journal of nanobiotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 38745193
- Full Text :
- https://doi.org/10.1186/s12951-024-02522-4