Back to Search Start Over

Ultrafast Carrier Relaxation Dynamics in a Nodal-Line Semimetal PtSn 4 .

Authors :
Lin T
Ju Y
Zhong H
Zeng X
Dong X
Bao C
Zhang H
Xia TL
Tang P
Zhou S
Source :
Nano letters [Nano Lett] 2024 May 29; Vol. 24 (21), pp. 6278-6285. Date of Electronic Publication: 2024 May 17.
Publication Year :
2024

Abstract

Topological Dirac nodal-line semimetals host topologically nontrivial electronic structure with nodal-line crossings around the Fermi level, which could affect the photocarrier dynamics and lead to novel relaxation mechanisms. Herein, by using time- and angle-resolved photoemission spectroscopy, we reveal the previously inaccessible linear dispersions of the bulk conduction bands above the Fermi level in a Dirac nodal-line semimetal PtSn <subscript>4</subscript> , as well as the momentum and temporal evolution of the gapless nodal lines. A surprisingly ultrafast relaxation dynamics within a few hundred femtoseconds is revealed for photoexcited carriers in the nodal line. Theoretical calculations suggest that such ultrafast carrier relaxation is attributed to the multichannel scatterings among the complex metallic bands of PtSn <subscript>4</subscript> via electron-phonon coupling. In addition, a unique dynamic relaxation mechanism contributed by the highly anisotropic Dirac nodal-line electronic structure is also identified. Our work provides a comprehensive understanding of the ultrafast carrier dynamics in a Dirac nodal-line semimetal.

Details

Language :
English
ISSN :
1530-6992
Volume :
24
Issue :
21
Database :
MEDLINE
Journal :
Nano letters
Publication Type :
Academic Journal
Accession number :
38758393
Full Text :
https://doi.org/10.1021/acs.nanolett.4c00949