Back to Search
Start Over
Effects of flowing water stimulation on hormone regulation during the maturation process of Conger myriaster ovaries.
- Source :
-
Frontiers in physiology [Front Physiol] 2024 May 02; Vol. 15, pp. 1404834. Date of Electronic Publication: 2024 May 02 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- Conger eel ( Conger myriaster ) is an economically important species in China. Due to the complex life history of the conger eel, achieving artificial reproduction has remained elusive. This study aimed to explore the effect of water stimulation on hormonal regulation during the artificial reproduction of conger eel. The experiment was divided into four groups: A1 (no hormone injection, still water), A2 (no hormone injection, flowing water), B1 (hormone injection, still water), and B2 (hormone injection, flowing water). The flowing water group maintained a flow velocity of 0.4 ± 0.05 m/s for 12 h daily throughout the 60-day period. Steroid hormone levels in the serum and ovaries of conger eels were analyzed using UPLC-MS/MS and ELISA on the 30th and 60th days of the experiment. The relative expression levels of follicle-stimulating hormone ( FSHβ ) and luteinizing hormone ( LHβ ) in the pituitary were determined by quantitative PCR. The results showed a significantly lower gonadosomatic index (GSI) in B2 compared to B1 ( p < 0.05 ) on the 30th day. FSH was found to act only in the early stages of ovarian development, with water stimulation significantly enhancing FSH synthesis ( p < 0.05 ), while FSHβ gene was not expressed after hormone injection. Conversely, LH was highly expressed in late ovarian development, with flowing water stimulation significantly promoting LH synthesis ( p < 0.05 ). Serum cortisol (COR) levels were significantly higher in the flowing water group than in the still water group ( p < 0.05 ). Furthermore, estradiol (E2) content of B2 was significantly lower than that of B1 on the 30th and 60th day. Overall, flowing water stimulation enhanced the synthesis of FSH in early ovarian development and LH in late ovarian development, while reducing E2 accumulation in the ovaries. In this study, the effect of flowing water stimulation on hormone regulation during the artificial reproduction of conger eel was initially investigated to provide a theoretical basis for optimizing artificial reproduction techniques.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.<br /> (Copyright © 2024 Li, Liu, Liu, Jiang, Ba, Li and Liu.)
Details
- Language :
- English
- ISSN :
- 1664-042X
- Volume :
- 15
- Database :
- MEDLINE
- Journal :
- Frontiers in physiology
- Publication Type :
- Academic Journal
- Accession number :
- 38764859
- Full Text :
- https://doi.org/10.3389/fphys.2024.1404834