Back to Search
Start Over
Fatty acid binding to the human transport proteins FABP3, FABP4, and FABP5 from a Ligand's perspective.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2024 Jun; Vol. 300 (6), pp. 107396. Date of Electronic Publication: 2024 May 20. - Publication Year :
- 2024
-
Abstract
- Fatty acid binding proteins (FABPs) are a family of amphiphilic transport proteins with high diversity in terms of their amino acid sequences and binding preferences. Beyond their main biological role as cytosolic fatty acid transporters, many aspects regarding their binding mechanism and functional specializations in human cells remain unclear. In this work, the binding properties and thermodynamics of FABP3, FABP4, and FABP5 were analyzed under various physical conditions. For this purpose, the FABPs were loaded with fatty acids bearing fluorescence or spin probes as model ligands, comparing their binding affinities via microscale thermophoresis (MST) and continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy. The CW EPR spectra of non-covalently bound 5- and 16-DOXYL stearic acid (5/16-DSA) deliver in-depth information about the dynamics and chemical environments of ligands inside the binding pockets of the FABPs. EPR spectral simulations allow the construction of binding curves, revealing two different binding states ('intermediately' and 'strongly' bound). The proportion of bound 5/16-DSA depends strongly on the FABP concentration and the temperature but with remarkable differences between the three isoforms. Additionally, the more dynamic state ('intermediately bound') seems to dominate at body temperature with thermodynamic preference. The ligand binding studies were supplemented by aggregation studies via dynamic light scattering and bioinformatic analyses. Beyond the remarkably fine-tuned binding properties exhibited by each FABP, which were discernible with our EPR-centered approach, the results of this work attest to the power of simple spectroscopic experiments to provide new insights into the ligand binding mechanisms of proteins in general on a molecular level.<br />Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Humans
Electron Spin Resonance Spectroscopy
Ligands
Thermodynamics
Fatty Acids metabolism
Fatty Acids chemistry
Binding Sites
Fatty Acid-Binding Proteins metabolism
Fatty Acid-Binding Proteins chemistry
Fatty Acid Binding Protein 3 metabolism
Fatty Acid Binding Protein 3 chemistry
Protein Binding
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 300
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 38777142
- Full Text :
- https://doi.org/10.1016/j.jbc.2024.107396