Back to Search
Start Over
Revealing the hidden world of soil microbes: Metagenomic insights into plant, bacteria, and fungi interactions for sustainable agriculture and ecosystem restoration.
- Source :
-
Microbiological research [Microbiol Res] 2024 Aug; Vol. 285, pp. 127764. Date of Electronic Publication: 2024 May 15. - Publication Year :
- 2024
-
Abstract
- The future of agriculture is questionable under the current climate change scenario. Climate change and climate-related calamities directly influence biotic and abiotic factors that control agroecosystems, endangering the safety of the world's food supply. The intricate interactions between soil microorganisms, including plants, bacteria, and fungi, play a pivotal role in promoting sustainable agriculture and ecosystem restoration. Soil microbes play a major part in nutrient cycling, including soil organic carbon (SOC), and play a pivotal function in the emission and depletion of greenhouse gases, including CH <subscript>4</subscript> , CO <subscript>2</subscript> , and N <subscript>2</subscript> O, which can impact the climate. At this juncture, developing a triumphant metagenomics approach has greatly increased our knowledge of the makeup, functionality, and dynamics of the soil microbiome. Currently, the involvement of plants in climate change indicates that they can interact with the microbial communities in their environment to relieve various stresses through the innate microbiome assortment of focused strains, a phenomenon dubbed "Cry for Help." The metagenomics method has lately appeared as a new platform to adjust and encourage beneficial communications between plants and microbes and improve plant fitness. The metagenomics of soil microbes can provide a powerful tool for designing and evaluating ecosystem restoration strategies that promote sustainable agriculture under a changing climate. By identifying the specific functions and activities of soil microbes, we can develop restoration programs that support these critical components of healthy ecosystems while providing economic benefits through ecosystem services. In the current review, we highlight the innate functions of microbiomes to maintain the sustainability of agriculture and ecosystem restoration. Through this insight study of soil microbe metagenomics, we pave the way for innovative strategies to address the pressing challenges of food security and environmental conservation. The present article elucidates the mechanisms through which plants and microbes communicate to enhance plant resilience and ecosystem restoration and to leverage metagenomics to identify and promote beneficial plant-microbe interactions. Key findings reveal that soil microbes are pivotal in nutrient cycling, greenhouse gas modulation, and overall ecosystem health, offering novel insights into designing ecosystem restoration strategies that bolster sustainable agriculture. As this is a topic many are grappling with, hope these musings will provide people alike with some food for thought.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier GmbH. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1618-0623
- Volume :
- 285
- Database :
- MEDLINE
- Journal :
- Microbiological research
- Publication Type :
- Academic Journal
- Accession number :
- 38805978
- Full Text :
- https://doi.org/10.1016/j.micres.2024.127764